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We present a class of structure detection procedures (SDPs) that can extract the characteristic
-structures in an arbitrary population of images. An SDP adaptively augments the power of a novel,
statistical, structure test to reject the null hypothesis that a randomly chosen image is deveid of
structure. The core of the structure test consists of an orthonormal basis B of receptive fields that is
refined into an increasingly sensitive detector of characteristic image structures. Adaptive
refinement is accomplished as follows: for each image x in a random training sequence, B is updated
by a planar rotation that decreases the p-value of a statistical structure test for x. This image-by-
image refinement procedure is very efficient, obeying time and space constraints similar to those
that limit processes of perceptual organization in real organisms. SDPs’ capabilities are
demonstrated in three test populations: natural images, faulty random number generators, and
artificial images composed of mixtures of basis functions. (1) An SDP succeeds in rejecting the null
hypothesis that the UNIX randem number generator rand() is truly random. (2) When images are
composed by adding arbitrary pairs of orthogonal component images, an SDP extracts the
compeonents. (3) For a large set of natural image patches, an SDP yields a basis B; that detects
structure with p-value < 0.005 in 88% of a new set of patches. B;’s elements resemble the receptive
fields of V1 simple cells. (4) Of special interest are biconvergent SDPs that derive in parallel a basis
B, as well as a pointwise transformation f, specifically sensitized to evaluate the response values that
result from applying B to images in the target population. A biconvergent SDP applied to natural
image patches yields a basis B, similar to B;, as well as a pointwise transformation f with vastly
heightened sensitivity to extreme response values. We conjecture that sensory neurons have evolved
cooperatively to maximize their collective power to reject the null hypothesis that their input is
devoid of structure, thereby evolving receptive fields that efficiently represent characteristic input

structures. © 1997 Elsevier Science Ltd
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INTRODUCTION

It is now well established that the visual system has a
hierarchical organization. We propose that this hierarch-
ical organization reflects a general strategy, achieved
through evolution, for detecting environmental regula-
rities at different levels of abstraction. Specifically, we
suggest that in each processing stage, the goal is to detect
the characteristic structures in the input—the output from
the previous stage. In this paper, we describe a procedure
that can be used to detect input structures. We speculate
that the emergent structures at various levels of human
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visual processing may reflect the recursive application of
such a procedure.

Structureless worlds

Imagine a world in which visual input is totally devoid
of structure. One such world is completely without light.
Many species that live in the ocean depths adapt to such a
world, and generally they evolve without sight. An
equally structureless, hypothetical world is one that
presents only spatially uniform, temporally unvarying
light of an unchanging spectral composition.

Visual input also is devoid of structure in a world that
presents to the retina a constant storm of homogeneous
white noise. In such a world, the intensity stimulating any
given point in the retina at a given time is perfectly
unpredictable; aside from measuring it directly, there is
no observation, no experiment, that an observer could
make that would provide any purchase whatsoever in
guessing this intensity. This means that there is no
possibility of accounting for the images presented to the
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retina in terms of any construct more compact than the
entire image stream itself. Vision would be just as useless
in this white noise world as it would be in a world of
completely uniform stimulation.

These remarks presuppose an intuitive understanding
of the term ‘structure’ as it applies to images and image
populations. The purpose of the rest of this section is to
give the term “structure” a more precise, formal
foundation.

Images, random images and image populations

We consider image populations, each of whose images
comprises some fixed number N of pixels. An image v
can be considered as a vector in RN. The i/ coordinate
value of v is thought of as the i pixel value of v and is
denoted v[i]. The term “random image” is often used to
refer to an image whose pixel intensities are randomly
assigned; here, however, a random image x is simply a
random variable in RN (with RN now construed as the set
of all images). That is, x is a random selection from a
population of images characterized by a density f on the
set RN of images.

Structureless random images and image populations

Some random images have the property that any image
that results from scrambling their pixels has the same
probability as the original image. We capture this notion
formally as follows: let f be a probability density on RN,
A given image v is said to be scramblable under f if
flg)=flv) for any image g whose pixel-intensity histo-
gram is identical to that of v.

A random image x with probability density fis said to
be structureless if every image is scramblable under f.
This means that the probability that x is equal to a given
image v depends only on the pixel-intensity histogram of
v, and is completely independent of the arrangement of
the pixels.

Structureless does not mean Useless

Note the curious implication that any uniform image v
(ie., any v whose pixels all take the same value) is
scramblable under any probability density f. Thus, any
random image x is structureless if its density assigns non-
zero values only to uniform images.

A very simple structureless random image, x, is either
all white or else all black with equal probability. A world
populated by such images would be either all white or all
black at any given instant. It might well be important for
an animal or a microbe in such a world to be able to
discriminate the “white world” from the “black world” if,
for instance, the white world affords different behavioral
possibilities than the black world.

This example illustrates that rudimentary visual
processes might be useful in worlds with structureless
image populations. However, such worlds are devoid of
all explicitly spatial structure; vision is effectively
reduced to a purely temporal sense, akin to smell.

The unique potential of vision, however, derives from
its sensitivity to forms and patterns, to relations between

C. CHUBB et al.

intensities occurring at different locations in space. This
paper focuses exclusively on such spatial relations.

Latent structures and projection pursuit

How does vision, or indeed any sensory system,
without guidance, become sensitized to the characteristic
structures in its world?

In this paper, we investigate the possibility that vision
achieves its environment-specific sensitivity by adap-
tively increasing its power to statistically reject the null
hypothesis Hj that its input is structureless. A critical
principle is that precisely the same procedure can be used
at the next level of processing, and indeed at successively
higher levels to discover the higher order, latent
structures in the visual input.

We describe adaptive processes called structure
detection procedures, SDPs, that can be used to test H,.
We show that, when applied to the population of natural
images, such a process naturally generates a set of
receptive fields that resemble simple cell receptive fields.

This project falls into a large body of recent research
devoted to understanding the relationship between the
statistics of natural images and the structure of simple
cell receptive fields (e.g., Barrow, 1987; Barlow, 1989:
Law & Cooper, 1994; Fyfe & Baddeley, 1995;
Schmidhuber, Eldracher, & Foltin, 1996; Linsker, 1988;
Oja, 1989; Sanger, 1989; Olshausen & Field, 1996:
Harpur & Prager, 1996; Foldiak, 1990; Intrator &
Cooper, 1992; Intrator, 1992; Hancock, Baddeley, &
Smith, 1992; Bell & Sejnowski, 1995; Liu & Shouval,
1994; Ruderman & Bialek, 1994; Ruderman & Bialek,
1992; Shouval & Liu, 1996). We do not claim biological
plausibility for the computation to be described. Our aim
here is to understand the goal of visual recoding, not
necessarily the biological process by which that goal is
achieved.

Projection pursuit. Projection pursuit (e.g., Huber,
1985) is a general method used in searching for structure
in complicated data sets. The relation of structure
detection procedures to projection pursuit is an interest-
ing issue that will be considered in detail after SDPs have
been described.

Overview of a structure detection procedure (Fig. 1)

Matrix of weights, B. The core of the SDP is a matrix B
that can be considered as the current set of receptive
fields used to process the image. The B receptive fields
are orthonormal, and initially chosen arbitrarily to begin
the SDP.

Gaussian replacement. An image x is then chosen from
the population. Images have N pixels; the matrix B is
NxN. The intensities of x’s pixels are ordered from
lowest to highest, and then replaced by the correspond-
ingly ordered values in an independent sample of
standard Normal random variables. The resulting image,
G(x) is called the gaussian replacement of x. The
histogram of G(x)’s pixel values is thus precisely the
histogram of a sample of standard normal random
variables. The gaussian replacement transformation is
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FIGURE 1. The flow of a Structure detection procedure. Following random initialization of the N x N basis By of receptive
fields, the SDP enters a loop, each iteration of which constitutes a single training trial. In the i + 1% training trial, a random image
x is drawn from the target image population. The input image x is then transformed into a realization g of G(x), the gaussian
replacement of x. Next, the current basis B; is applied to g yielding a vector y of receptive field responses. Under Hy y should
consist of jointly independent, standard normal random variables. A chi-square test is applied to the coordinate values of y in an
attempt to reject Hp. Then a vector yurge is selected in the neighborhood of y such that (i) the histogram of yurge: differs more
from normality than that of y; and (ii) | yarget! = Iyl (S0 that yiarger is reachable from y by a rotation). Then, for Ry v the planar
rotation in the plane spanned by {¥, yirget } that maps y onto Yaceer, Bit1 is set equal to Ry yuye: Bi- This assignment has the desired
effect that Bi, ;g = Yirger; thus, applying B, to g yields a vector yurge of receptive field responses that deviate from normality
more than the receptive field responses y = B;g.

Generate Yyyrgey

useful for statistical certification of the SDP, but is not
essential for other aspects of the SDP, such as arriving at
efficient representations of the input.

Linear transformations. The matrix B of receptive
fields is applied to G(x) yielding a transformed image
B(G(x)). The histogram of B(G(x)) is evaluated for
Normality, and a planar rotation is applied to B to
produce a new basis B', such that B'(G(x)) deviates
slightly more from Normality than B(G(x)). Then the
process is repeated with a new image.

The use of a planar rotation to update B permits a
significant simplification and speedup of the adaptive
search process.

Statistical certification. Structure detection is statisti-
cally certified in the following sense: the set B of
receptive fields derived as the end product from applying
structure detection to a sample drawn from an image
population P is a P-specific, statistical tool that can be
used on any new image x of P to test the null hypothesis
H, that x is structureless. If and only if the image
population P is structured, is it possible to derive a set B
empowered to reject Hy with probability greater than
chance.

However, statistical certification is purchased with
some costs. (1) The logic underlying structure detection
requires that the emergent basis B of receptive fields be
orthonormal. This condition is not required by most
unsupervised learning procedures; moreover, it has been
explicitly argued (Olshausen & Field, 1996a) that the
statistics of natural images make it unlikely (and
counterproductive) for simple cell receptive fields to
strive for orthonormality. As we shall explain, though,

constraining B to be orthonormal confers important
inferential power. (2) The current procedure involves a
preprocessing stage that discards a great deal of
information from input images. In particular, the
intensities of individual pixels are ordered from lowest
to highest, and then replaced by the correspondingly
ordered values in a sample of standard Normal random
variables. This operation preserves only the ordinal
information in the input image. (3) The initial image
transformation involves randomness which makes it
noninvertible.

The section entitled “Structure detection’ below gives
a precise description of the structure detection procedure.
The description of the procedure is given ir “The tuning
procedure”. In “Preliminary tests of structure detection”,
we test the procedure on two image populations: images
consisting of bit-strings from the Unix random number
generator rand(), and one other artificial population of
images. Then in “Discovering structure in natural images
with an SDP” we describe an application of structure
detection to the population of natural images. The
resulting receptive fields are compared with simple
cells. “A search procedure without gaussian replace-
ment” investigates the importance of gaussian replace-
ment in the search procedure of an SDP; specifically,
an SDP without gaussian replacement is applied to
natural images. “Biconvergent SDPs” are introduced in
the following section. These SDPs simultaneously dis-
cover a basis of receptive fields as well as the way in
which their responses deviate from normality. No
artificial update rule is imposed to guide the search
procedure. Finally, “A simulation using a biconvergent
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SDP” reports the result of a biconvergent SDP applied to
natural images.

STRUCTURE DETECTION

In this section we describe structure detection, an
adaptive procedure for discovering the characteristic
structures inherent in a given image population. We begin
with several preliminary definitions.

Preliminary definitions

The results we present here presuppose that random
variables are real-valued and continuous.

A function 7: RN RN is called an image transforma-
tion. For any image v, T(v) denotes the image that results
from applying 7 to v, and T(v)[i] gives the i pixel value
of T(v).

Standard normal IID random images. A random image
x is called IID if x’s pixel values are jointly independent,
identically distributed random variables. In this case, the
(cumulative) distribution function characterizing one of
x’s pixel values is called x’s pixel distribution. An IID
random image x is called standard Normal if its pixel
values are standard normal random variables.

Pointwise transformations and histogram distortion
templates. For any function £:R—R, and any image v, we
define the image fo v by setting

Fov)lil =r£0vli) (1)
for all pixels j=1, 2,..., N. fo is thus a transformation
whose output value at any pixel results from applying the
function f to the input value at that pixel. Accordingly,
f o is called a pointwise transformation.

For reasons that will become clear later, we call a
pointwise transformation fo a histogram distortion
template if

(2a)

(2b)

Isometries. Let B be an NxN matrix whose row
vectors make up an orthonormal basis of RV . In this case,
B’sinverse is BY (the transpose of B). Thus, for any veR",

]Bv]2 = (Bv)T(Bv) =vIBTBy =vTv = |v|2, (3)

showing that vector length is preserved by the linear

operator B; for this reason B is called an isometry.
Two-dimensional (planar) rotations. For any distinct,

orthonormal vectors x, y € RY, any f € [0, 1], the matrix

Oxys =1+ [x(ﬁ )+ ym}g
o8- 1) /T F)y" @

is an isometry. In particular, for any veRN, Oy, 5v is the
vector that results from rotating the projection of v in the
plane spanned by {x, y} through an angle 6 = arccos(f}) in
the direction from x toward y.
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This leads to the following definition. For arbitrary
normal vectors x, y € R¥(x and y not necessarily
orthogonal), set

Rx,y = Qx,ix'ya (5)

where y is the normalized component of v orthogonal to
x:

Sy~ (xyx
V=7 6
by — (x- )| (©)
It is easy to check that:
Ryyx =y. (7)

Thus, Ry y is the rotation within the plane spanned by
{x, ¥} that maps x onto y.

The structure test

Structure detection is an adaptive method for tuning an
isometry B to detect the characteristic structures in a
population P of images. At the core of this method is the
statistical test that we call the structure test. The structure
test depends on the following well-known fact.

Observation 1. An isometry applied to an IID standard
Normal random image yields a IID standard Normal
random image. That is, for any isometry B on RN, and
any standard Normal IID image y, By is also a standard
Normal IID image. The proof (omitted for brevity)
depends on the fact that the joint density of a standard
Normal IID image is spherically symmetric, and hence
will be preserved under rotations.

We make use of this fact as follows. Let x be a random
image from P, and let B be an orthonormal basis spanning
RN. Assume the null hypothesis Hy that x is devoid of
structure. We perform the following steps:

1. Gaussian replacement
2. B-application
3. Normality testing

Gaussian replacement transforms the random image x
into a random image G(x) with the following property: if
x is structureless, then G(x) will be standard Normal IID.
Hence, by the observation above, the result B(G(x)) of
applying isometry B to G(x) (step 2) must also be
standard Normal IID. We test this condition in step 3; in
particular, we use a standard chi-square test of the
hypothesis that the histogram of B(G(x)) was generated
by a sample of N jointly independent, standard Normal
random variables. We now describe these three steps in
detail.

Gaussian replacement. The goal of this step is to derive
from the given image x a random image G(x) that will be
standard Normal IID if (and only if) x is structureless. To
do this we

1. Obtain a fresh sample S of N jointly independent
standard Normal random variables. Then,

2. Produce G(x) by replacing the i greatest pixel-
value of x (fori =1, 2,..., N) by the i greatest value
in the random sample S. In the case in which the i,
i+ 1%,..., i+ kM greatest pixel-values of x are all
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equal, the corresponding pixels of G(x) are assigned
the i®, i+1%,.., i+ k™ greatest values of S in
random order.

The Gaussian replacement operator G has some
unusual properties. First, note that G is not an ordinary
image transformation; it is a random image transforma-
tion. That is, given a non-random input image veRN, G(v)
is a random image. However, G is quite well-behaved for
images v with many distinct pixel intensities. In
particular, the larger we make the number of pixels in
an image, the less randomness G introduces when applied
to richly variable images.

Note also that G(v) depends only on the ordinal
relations between the pixel intensities in v. Thus, for any
images v, w e RN, if the ordinal relations among the pixel
intensities of v are identical to the ordinal relations
among the pixel intensities of w, then G(v) is identically
distributed to G(w).

This is potentially a useful property for a visual
preprocessing transformation to have. Vision is primarily
concerned with extracting information about things in the
world. However, the light emanating from objects
depends both on the surface properties of the objects
and also on the spectral properties of the illuminating
light. Accordingly, as many have noted, a plausible goal
of early visual processing is to transform the retinal
image so as to discard information about the illuminant,
while preserving only information about illuminated
objects. Of course, the absolute light levels of points in
the visual field are liable to depend in uncontrolled ways
on the nature of the illuminant. Conversely, ordinal
relations between intensities in the scene tend to be
invariant with respect to variations in illumination over
time.

For purposes of the structure test, the important point
to note about G is that if the image x being tested is
structureless (as assumed under Hy), then, G(x) will be
standard Normal IID. On the other hand, if x is not
structureless, then the ordinal, interpixel relations within
x will be largely preserved in G(x).

B-application. Next we apply B to G(x). If Hp holds,
then the observation above implies that B(G(x)) must be a
standard Normal IID random image. On the other hand, if
H, is false then G(x)’s pixel values will be systematically
ordered across space. In this case, applying an appro-
priate basis B to G(x) yields a set of response values
whose histogram deviates significantly from standard
normality.

Normality testing. If we can reject the hypothesis that
the response values of B(G(x)) are jointly independent
standard Normal random variables, we also reject the
hypothesis that G(x) is a standard Normal IID function,
which in turn rejects the original null hypothesis Hy that x
is structureless.

In the first SDPs we shall describe, the test we use
(others would have served as well) is a standard chi-
square test in which we partition the real number line into
bins Cy, C5,..., Cn subsuming equal area (bin area = 1/m)
under the standard Normal density curve. Then, under
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Hy, the expected number of B(G(x)) values within each
bin is N/m. Suppose the actual number of observations
falling within bin i is O[i] (i=1, 2,...,m). Then (e.g.,
Hays, 1988)
"~ (mO[i] - N)
U= ; — (8)
is distributed as chi-square with mO — 1 degrees of
freedom. Accordingly, if W is larger than some critical
value, we reject Hp, and conclude that x is not
structureless.

In “Biconvergent SDPs”, we introduce an important
modification to the SDPs used in the sections entitled
“Preliminary tests of structure detection” and “Dis-
covering structure in natural images with an SDP”. This
new biconvergent SDP makes use of a different statistic
than that given by equation (8)—a statistic whose precise
form is derived adaptively, in parallel with the basis B.

The tuning procedure

By itself, the structure test detailed above is of little
use. It is easy to imagine this test failing to reject a false
Hj due to a poor match between the isometry B and the
structures inherent in x. To take an extreme example, if B
is the identity on RN, then B(G(x)) = G(x), in which case
the random variables (B(G(x)))[i] are precisely standard
Normal; hence, in this case, the test is completely
powerless to correctly reject Hy, no matter how false it
may be. However, as we shall demonstrate with the
examples in the sections entitled “Preliminary tests of
structure detection” and “Discovering structure in
natural images with an SDP”, it is possible, at least in
certain instances, to adaptively tune B, over a series of
“learning” trials, to the characteristic structures in a given
image population.

The sequence of steps. Prior to tuning, we initialize By
to a random, N x N orthonormal matrix. Then on each
learning trial i =1, 2,..., we

1. Sample: randomly select a new image patch x € RN
from our target population of images. Then

2. Test: use B; in applying the structure test to x.

3. Update: produce the isometry B;. to be used in the
next iteration according to the “update rules,” so as
to increase the power of the structure test to reject
the null hypothesis that x is structureless.

Update rules. There are many possible rules that might
be used to transform B; into B;,;. The rules we have
investigated in our simulations are all of the following
general form.

For g, a realization of G(x), let y = Bjg. Our aim is to
increase the deviation from Normality of the histogram of
y. Accordingly, we

1. Apply an adaptively evolving transformation I to y
to produce a “target” vector Yirge = I'(y), such that

a. Iytarget = Iyl (s0 that y can be rotated 10 yrarget)s

b. Wiarger — ¥ is “small” (so that B will differ only

slightly from B;), and
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c. the histogram of yi e deviates more from a standard
Normal distribution than does that of y.

Then (for Ry, defined by equation (5)) we set

Yourget
Bit1 = Ry o B 9)

This assignment has the desired result that
Bi 118 = Yiarget (10)

That is, the power of By to detect the structure in x is
increased over that of B;.

Varieties of update transformations. In applying
structure detection to natural images, we have experi-
mented with various different update transformations I'.
In sections entitled “Preliminary tests of structure
detection” and “Discovering structure in natural images
with an SDP” we shall use transformations of the
following form. For any non-negative real number g,
define the function f,: R—R by setting:

fo(r) = sign(r)|r|* (11)
for all reR. Then for any image veRN, set
i
Ly (v) :quov' (12)

The rescaling accomplished by equation (12) insures
that ITg(v)I =Ivl, as required in order for I'y(v) to be
reachable from v by a rotation.

If g>1, then Iy has the effect of enlarging the
magnitude (while preserving the sign) of those pixel
values that are greater than 1, and diminishing the
magnitude (while preserving sign) of pixel values less
than 1. Typically, for g > 1, the histogram of I'q(v) will
tend to have higher kurtosis than does the histogram of v.

On the other hand, if ¢ < 1, then I’y has the opposite
effect of diminishing the magnitude (while preserving the
sign) of those pixel values that are greater than 1, and
increasing the magnitude (while preserving sign) of pixel
values less than 1. In this case (for g < 1) the histogram of
Iy(v) will tend to have lower kurtosis than does the
histogram of v.

In the section “A simulation using a biconvergent
SDP” we shall examine the performance of ‘biconver-
gent’” SDPs whose update procedure differs from that
described here. Specifically, these modified SDPs update
not only the basis B; (to produce B, ), but also a function
fi:R—R (to produce function f;,) that is both used in
Normality testing, and is also used in updating B;.

Structure detection compared to standard varieties of
projection pursuit. Structure detection should perhaps
be counted among the data mining techniques called
projection pursuit methods (e.g., Huber, 1985). There is
an assumption, borne out in practice, that linear
projections of real-world data sets into arbitrary sub-
spaces tend to have gaussian distributions. Indeed,
Diaconis & Freedman (1984) have shown formally that
for non-structured data sets, almost all projections are
nearly the same and approximately gaussian. Thus,
projections that result in non-gaussian distributions
often signal, and aid in analyzing the processes that
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generated the data. Accordingly, in projection pursuit, the
aim is to find a subspace, typically (but not necessarily) of
low dimensionality, such that the projection into that
subspace of the given data set is highly “non-gaussian.”

Let Data C RN be a data set comprising d points, and
let D be an N x d matrix whose column vectors are the
points of Data. The goal of standard projection pursuit
applications is to find an m x N matrix B (typically, but
not necessarily, with m < N) such that the matrix P = BD
has rows (of length d) whose histograms are highly non-
gaussian. The i row of P is called the projection of Data
onto the i row vector of B. One chooses a cost function
C that is used to evaluate each candidate basis B. C is
typically chosen to have low values if the projection
matrix BD has rows whose histograms are highly non-
gaussian. If one has reason to suppose that there exist
projections whose histograms deviate from Normality in
a specific way (e.g., due to high kurtosis, or positive
skew), then one tailors C to reflect this supposition. Some
search procedure is then used to find a basis B for which
C is (at least locally) minimized.

The differences between standard projection pursuit
procedures and SDPs are illustrated in Fig. 2.

One important difference between structure detection
and other variants of projection pursuit is the statistical
certification conferred by the gaussian replacement
operation. As mentioned above, Diaconis & Freedman
(1984) have shown that for IID data sets, almost all
projections are nearly the same and approximately
gaussian. As concerns the issue of statistical certification,
however, the phrase “almost all”” is crucial. Consider, for
example, a population of IID random images with a
highly non-gaussian pixel distribution. For concreteness,
imagine that each pixel takes either the value —1 or the
value 1 with equal probability. Let x be a random image
from this population. Although it is true that for almost all
orthonormal bases B, the pixel values of image Bx will be
marginally normal in distribution, there obviously exists
a highly non-gaussian, full-rank projection of x; in
particular, for 7 the N x N identity matrix, the pixel values
of Ix are all either —1 or 1. In conjunction with
observation 1, this observation implies that for bases B
other than 7, if the pixel values of Bx are marginally
normal, then they cannot be independent.

One effect of applying gaussian replacement to x is to
remove the trivial solution basis / from the search space.
More generally, by substituting the gaussian replacement
G(x) for x, we insure that if x is structureless, then for any
basis B, the pixel values of BG(x) must by jointly
independent, standard Normal random variables. It is
precisely this certitude that enables secure statistical
inference. It may be of interest to test whether an image
population P is truly random (i.e., consists of IID random
images). To investigate this issue, one might use an SDP.
If, for example, the SDP yields a basis B that succeeds in
rejecting Hy (that the given input image is structureless)
at the 0.05 level, for only 7% of a sufficiently large
number of images, then one can conclude with high
certainty that P is not truly random.
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FIGURE 2. The differences between Structure Detection Procedures and standard variants of projection pursuit. In an SDP, an
update of the basis B of receptive fields depends on B’s response to only a single training image from the target population. By
contrast, in most applications of projection pursuit, an update of B depends on B’s responses to the entire set of training images,
X1, X2,..., Xn. Standard projection pursuit applications update B so as to increase the deviation from normality of the response
histograms of individual receptive fields of B across the entire set of training images xi. SDPs update B so as to increase the
deviation from normality of the histogram of all receptive field responses to the current image. Finally, and crucially, SDPs
begin a training trial by transforming the input image x into a realization g of G(x), the gaussian replacement of x. This operation
enables statistical assessment of the null hypothesis Hj that x is devoid of structure.

Another important difference is that the SDP uses a
search procedure that is computationally very efficient
but unlikely to converge to as nearly optimal a solution as
other sorts of projection pursuit. In the current SDP
implementation, on each training trial i, the basis B; is
transformed into a slightly different basis B;,; that does a
little better than did B; at rejecting the null hypothesis Hy
that the current input x; is devoid of structure. This update
is made without reference to any of the previous inputs x;,
j < i. Thus it is entirely possible that B;,; might perform
worse than B; at rejecting Hy for some or all of these
previous x;j. Clearly, there is no guarantee that this image-
by-image training procedure will converge to a basis
Brinal that is in any sense “optimal” at rejecting Hy.

Most standard projection pursuit applications use more
powerful search procedures, procedures that update the
basis B reiteratively based on B’s responses to the entire
ensemble of training images. Thus, at each step, B is
applied to all training images; the target cost function is
computed for the resulting distribution of responses; then

B is modified so as to decrease the value of the cost
function. In this way, one attempts to arrive at a basis B
that is optimal in the sense that the distribution of B’s
responses to the ensemble of training images minimizes
the target cost function.

Of course, updates in such a procedure are expensive in
space and time. A single update requires access to the
entire store of training images, and extensive computa-
tions are required to modify B.

We have opted for an update procedure that makes no
claim to optimality, but that (i) seems likely to yield
adequate results in practice; and (ii) operates under the
same sorts of time and space constraints that would be
likely to limit perceptual organization processes occur-
ring in a real organism. The primary virtue of our update
procedure is that it requires minimal computational space
and time. Images need not be retained in memory. The
only space requirement is memory for the basis B (O(N?),
for N the number of pixels in an image); moreover, the
computation used to update the basis B takes only O(N?)
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time (quite efficient, when one reflects that to compute
the product of two matrices, each the size of B, requires
O(N?) time).

The SDPs used in the sections entitled “Preliminary
tests of structure detection” and “Discovering structure
in natural images with an SDP” also differ from other
sorts of projection pursuit in their handling of the role
usually played by a cost function. In standard applica-
tions of projection pursuit, the cost function C plays two
roles: first, C is used to evaluate each candidate
projection of the entire data set. Second, the emergent
projection basis B is modified at each step in the pursuit
process so as to decrease C (often, the gradient of C is
computed at B, and B is updated along the gradient). In
the first SDPs we consider, these two roles are shared by
the update transformation I', and the p-value resulting
from the structure test. It is the p-value from the structure
test that is used to evaluate the projection basis B at each
step. The structure test gauges the deviation form
normality of the histogram of B’s responses to the current
image. However, the update transformation I' is always
used specifically to increase the kurtosis of B’s response
distribution. Consequently, if the histogram of B’s
responses to the current image is of lower kurtosis than
the standard normal distribution, then the update
performed on B could have the immediate effect of
increasing the current p-value.

This awkwardness in behavior is avoided by the
biconvergent SDPs to be described in the section
“Biconvergent SDPs”. Biconvergent SDPs simulta-
neously update the basis B as well as a histogram
distortion template f (see “Preliminary definitions” for
the definition of a histogram distortion template) that is
integral both in updating B (the role currently played by
the update transformation I') and also in assessing the
deviation from normality of B(G(x)) for each successive
training image x.

By promoting high kurtosis response histograms, one
might expect to discover a basis B (if it existed) such that
the response histogram of any given receptive field in B,
taken across all images in the target population, was
highly kurtotic. Each receptive field of such a basis B
would respond strongly to a few images in the target
population, and near 0 to all other images. Such a basis B
would provide a code for the target image population that
is both sparse and distributed. In practice, however,
promoting high kurtosis response histograms tends to
discover bases B (if they exist) in which a few receptive
fields are chronically activated more highly than the
others by images from the target population. In the non-
artificial applications we shall describe, the histograms of
individual basis elements, taken across samples of images
from the target population, tend to be normal, but with
different standard deviations. Thus, as will become clear
from some of the examples in the following sections, the
current implementation of structure detection is likely to
isolate a subset of quasi-principal components (the highly
active receptive fields) of the target image population.

C. CHUBB et al.

Preliminary tests of structure detection

Testing the randomness of rand(). As a first test of the
structure detection procedure, we applied the method to
test the notoriously deficient C programming language,
random number generator, rand(). To apply the proce-
dure, we generated images v consisting of 31 x 31 pixels,
each assigned the value 0 or 1. The assignments were
made by sampling a sequence of 31 successive integers
from rand(). Each integer consists of 31 significant bits.
The pixel value v(i,j) was set equal to the j* bit of the i”
integer (i.e., v(ij) = 1 if bitj of integer i is 1, and v(ij) = 0
otherwise).

A basis Bgp, was obtained after a training sequence
consisting of 20000 images. The effectiveness of B,
was then assessed by applying Biina in the structure test to
a completely new sequence of 10000 images. The null
hypothesis Hy that images consisted of jointly indepen-
dent binary values (i.e., that rand() is truly random) was
rejected with a p-value less than 0.08 for 90% of the test
images. If rand() were truly random, then the rejection
rate should be close to 8%. The obtained rate of rejection
(90%) is obviously much higher than might be expected
by chance (p infinitesimal). The 15 receptive fields of
Bginal that responded most strongly on average to the test
images are shown in Fig. 3.

For example, look at the top left-hand square of Fig. 3.
Each of this square’s 31 rows contains 31 pixels, which
correspond to the 31 significant bits composing an integer
drawn from rand(). Successive rows correspond to
successive integer draws from rand(). In a given row,
bit order increases from left to right. Thus the leftmost
pixel of the top row corresponds to the low order bit of
the first of 31 successive integers drawn from rand().
Notice that in almost all of these 15 most active receptive
fields, the weights corresponding to the low order bit
oscillate positive and negative from row to row. This
finding reflects a well-known deficiency of rand():
successive draws from rand() alternate strictly between
odd and even numbers. More generally, these receptive
fields make it clear that the low order five bits of integers
returned by rand() are far from jointly independent.

We also applied structure detection to the newer UNIX
random number generator, random(), which is reputed to
be much better than rand(). Exactly the same procedure
was applied. In this case, we were unable to reject the null
hypothesis that random() was truly random. (The null
hypothesis H, that images consisted of jointly indepen-
dent binary values was rejected with a p-value of 0.08 for
8% of the test images.)

Discovering structures in an ariificial image
population. As a second test of the procedure, we
considered a population of images produced using the
binary, orthonormal basis W shown in Fig. 4(a). The i"
image in the j” row of Fig. 4(a) (ij=0, 1., 15) is
defined for pixels (x,y).x,y € 0, 1,..., 15 by:

Wijlx,y] = wilxlw;[y], (13)

for wg, Wi,..., wis the Walsh basis functions, defined on
the set {0, 1,..., 15} (e.g., Gonzalez & Wintz, 1987).
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FIGURE 3. The 15 most effective receptive fields derived from an SDP applied to samples of pseudorandom numbers drawn
from rand(). Each square contains 31 rows x 31 columns of pixels. The 31 pixels in a given row correspond to the 31 significant
bits of an integer drawn from rand(). Successive rows in a square correspond to successive integer draws from rand(). In a given
row, bit order increases from left to right. Thus, the leftmost pixel of the top row corresponds to the low order bit of the first of 31
successive integers drawn from rand(). Notice that in almost all of these 15 most active receptive fields, the weights
corresponding to the low order bit oscillate positive and negative from row to row. This finding reflects a well-known deficiency
of rand(): successive draws from rand() alternate strictly between odd and even numbers. More generally, these receptive fields
make it clear that the low order five bits of integers returned by rand() are far from jointly independent.

The images in our test population were constructed by
randomly selecting, on each trial, two elements from W,
and adding them together with random signs. Specifi-
cally, each image v is given by

(14)

where ¢ and p are independent random variables, each
assuming the values +1 or —1 with equal probability, and
1 and w are two random elements of W.

The latent structures in this population are precisely the
elements of W. Thus, the basis Bfina that should be
discovered by structure detection is the basis W itself. To
elaborate this point, note that for any v given by equation
(14), Wv is an image that assigns the value 0 to all but two
pixels, each of which is assigned either 1 or —1, with
equal probability. Thus, the histogram of Wv is extremely
non-gaussian. In particular, Wy’s histogram has a huge
spike (registering probability 127/128) at 0 (because 254
of 256 of Wv’s pixel values are 0), and a spike of size
1/128 at either 1 or —1, or else spikes of size 1/256 at
each of 1 and —1. Although the gaussian replacement
G(v) differs randomly from v, it is nonetheless to be
expected that WG(v) will be highly kurtotic. Indeed, it is
clear that W is optimally suited, in the context of the

v = ¢w+ pu

structure test, to reject the null hypothesis that v is
structureless.

This simulation provides a useful test of the structure
detection procedure. Note that the histogram of each
input image in this population has at most three values;
thus, for each image, the gaussian replacement procedure
introduces dramatic, random intensity changes. One
might have supposed that the intensity distortions
introduced by gaussian replacement would lead to a
value of Byna other than W, However, this is not the case.
We applied structure detection to a sequence comprising
196,608 images from this population. The resulting basis
Biinal 1s shown in Fig. 4(b). As is clear, By, converges
precisely to W.

DISCOVERING STRUCTURE IN NATURAL IMAGES
WITH AN SDP

In this section we shall describe the results of applying
an SDP to a collection of natural images. We begin by
describing the image selection and preparation proce-
dure. Next, we describe details of the specific computa-
tion used. Finally, we present the results of the simulation
and interpretation.
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FIGURE 4(a)—Legend opposite.

Procedures

Image selection and preparation. The images we use
are drawn from the PhotoDisc “Starter Kit” CD-ROM
(PhotoDisc, 1995), which contains roughly 9000 digi-
tized photographs of diverse scenes. We use the
following criterion to select our images. A given image
is included in our ensemble if, and only if, it contains no
man-made objects or man-produced patterns. In parti-
cular, we exclude any images containing clothing or
paintings. This procedure yields a set of 958 images
comprising landscapes, plants, animals and portions of
the human body. The images varied in size: most were
around 400 x 400 pixels.

Each of these colored photographs is first converted
into an eight-bit, digitized, grayscale image. Each
grayscale image is then parceled into a collection of
16 x 16 pixel patches, yielding a total of 8 x20x 958 =
153280 patches. Patches were then placed into a quasi-
random sequence by performing the following operation
eight times:

(i) We select a random subset of 20 patches from each
of our 958 images, making sure that none of these 20
patches have ever been included previously in the
sequence. Then we

(i1) Randomly order the resulting set of 19 160 patches;
and
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FIGURE 4. Applying an SDP to artificial images. (a) An orthonormal basis W of binary images. An SDP was applied to an

artificial population of images in which random pairs of elements of W were added together with weights randomly equal to 1 or

—1. The source structures in this population are precisely the elements of W. Thus, the basis By, that should be discovered by
the SDP is the basis W itself. (b) The basis Bpna obtained. As is clear, By, converges accurately to W.

(iii) Append the new subsequence to the previously
generated sequence.

Finally, all perfectly uniform patches (all patches
whose pixels are all assigned a single value) were
removed from the sequence. Rationale: any uniform
image is structureless in any image population. This point
is underscored by noting that the gaussian replacement of
a uniform patch is literally a standard normal IID image.
Thus, for such patches, the null hypothesis is necessarily

true. This screening procedure removed 0.5% of all
image patches.

The remaining sequence contained a total of 152508
16 x 16 pixel patches. The training sequence comprised
the first 133 443 of these patches. The testing sequence
comprised the remaining 19 065 patches.

Training. In the current application of structure
detection, we initialize By to a 256 x256 random,
orthonormal matrix. Each row of By corresponds to a
single 16 x 16 pixel receptive field, which will be kept
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FIGURE 5. Applying an SDP to natural images. The receptive fields of basis Bfna, derived from applying an SDP to a sequence
of randomly chosen, 16 x 16 pixel patches of natural image. These receptive fields are ordered, from left to right within a row,
and from top to bottom, in terms of the average absolute value of their responses to the test images. The most active receptive
fields are selective for oriented, low and moderate spatial frequencies, reflecting the prevalence of low spatial frequencies in
natural images. Those receptive fields showing high activation levels display orientation selectivity and spatial localization
similar to simple cell receptive fields. Only the 40 most active receptive fields had an average activation level greater than 1; the
other (less active) receptive fields issued responses consistently very near 0. Thus, although the code for natural images provided
by these receptive fields is sparse, it is not distributed.

orthonormal with respect to all the other rows as B; “The tuning procedure”) that is altered gradually
evolves throughout the procedure. during the training process. The parameter g is
On the i training trial, we follow the usual sequence restricted to the range [1, 1.25] on any given training
of steps described in “The tuning procedure”. Specifi- trial. As the basis B; is transformed into an
cally, we increasingly powerful structure-detector, the value
1. Sample by reading in the i patch x in the training of g is adaptively reduced. This tends to yield
sequence smaller and smaller changes to FB; as training

2. Test by applying the structure test to the gaussian proceeds. We have no reason to believe that the
replacement of x; and particular mechanism of reducing ¢ influences the

3. Update B; using an update transformation I'y (see outcome of the simulation in any major way.
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FIGURE 6. Extraction of residual, high-frequency structure from the training images. Although most of the energy in the
training images is concentrated in the 40 most active receptive fields obtained in Fig. 5, there remains high spatial-frequency
structure in the residual images. This high-frequency structure can be detected by reiterating the SDP on the set of residual
images. The result of this operation is shown here. The first 40 receptive fields in this figure are identical to the first 40 in Fig. 5.
The other receptive fields result from applying an SDP to the sequence of residual training images. These new receptive fields
are more obviously structured than their counterparts in Fig. 1. This new, high-frequency ensemble enables us to reject Ao with a
p-value of 0.05 for 37% of the test images. Although this performance level is much lower than was obtained for the original
training set, it is still highly significant.

Assessment. The entire sequence of training trials
yielded a matrix Bp,, which was supposed to capture the
characteristic structures inherent in the images of the
training sequence. To assess Bjyq's ability to reject Hy,
we proceeded to use By, in applying the structure test to
each patch in the testing sequence (none of which had
been presented during training).

Results

Overall performance. Hy was rejected by Bj,, in the
structure test at the 0.005 level of significance, for 87.9%

of the patches in the testing sequence. The average p-
value over all patches in the testing sequence was 0.024,
indicating that By, does a creditable job at capturing the
structure in the image population.
Low-spatial-frequency receptive fields. The receptive
fields of Bpy. are shown in Fig. 5. These receptive fields
are ordered in terms of the average magnitude of their
responses to the training images. As is evident, the most
active receptive fields are selective for oriented, low and
moderate spatial frequencies. This reflects the well-
known prevalence in natural images of low spatial
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frequencies (e.g., Field, 1987). Those receptive fields
showing high activation levels are similar in structure to
simple cell receptive fields (i.e., they tend to be oriented
and spatially localized). Interestingly, only the 40 most
active receptive fields had an average activation level
(across the training image set) greater than 1 (the value
expected for all receptive fields if Hy were true). Indeed,
most of the other (less active) receptive fields issued
responses consistently very near zero. Note that these less
active receptive fields are devoid of any obvious
structural components; they show little orientation tuning
and little spatial localization. Evidently, the typically
high kurtosis of the histograms obtained by applying
Binal to the testing images results from having a handful
of receptive fields issuing high responses to most images,
while all other receptive fields issue responses consis-
tently near 0. Thus, although the code for natural images
provided by these receptive fields is sparse (only a few
receptive fields are strongly activated by any given input
image), it is not distributed (most units are never very
active).

The fact that few receptive fields (only 40) were, on
average, more active than was to be expected by chance
suggests that

1. The training images were generated primarily by
only a few latent structures (corresponding to the
active receptive fields), which were successfully
discovered by the structure detection procedure.

2. The resulting code is fairly compact, because only
the responses of this small set of active receptive
fields are required to approximately code the
original images.

High-spatial-frequency receptive fields. Although
most of the energy in our training images is concentrated
in the 40 most active receptive fields obtained, there
remains high spatial frequency structure in the residual
images (i.e., in those components of the original images
that are not captured by the 40 most active receptive
fields). Even though high frequencies contribute scant
overall energy to natural images, the information carried
by high frequencies can be of crucial importance to an
observer.

High-frequency structure can be detected by reiterating
the structure detection procedure on the set of residual
images. Specifically, let Byegiguar be the 216 X 256 matrix
comprising all those receptive fields (rows) of Bfina
whose average response energy to the testing sequence
was less than 1.0. We project each input image of our
training sequence into the space spanned by the rows of
Bresidual. Then we apply structure detection to the
resulting sequence of residual images, starting with
matrix Bg = Bresiqual- Thereby, all subsequent, updated
B;’s remain orthonormal to the 40 elements of Bgny
excluded from Biesidqual-

Although the residual images are much lower in energy
than the original images, they remain rich in delicate
structure, structure that could not be detected previously
because of the predominance of the low-frequency

C. CHUBB et al.

response energy. In essence, this operation removes from
each image in our training and testing sequences those
components whose activation levels were consistently
determining the tails of our response histogram.

The result of this reapplication of structure detection is
shown in Fig. 6 (compare with Fig. 5). The first 40
receptive fields in Fig. 6 are reproduced from Fig. 5 to
facilitate the comparison of the 216 remaining receptive
fields in each of the two figures. The 216 receptive fields
that result from reiterating the structure detection
procedure on the sequence of residual training images
are more obviously structured than their counterparts in
Fig. 5. The 216 new receptive fields enable us to reject Hy
(the null hypothesis that the residual images are devoid of
structure) with a p-value of 0.05 for 37% of the images in
the testing sequence. Although this performance level is
much lower than was obtained for the original training
set, it is still highly significant.

A SEARCH PROCEDURE WITHOUT GAUSSIAN
REPLACEMENT

Procedure

A novel aspect of structure detection is the gaussian
replacement operation. It is this processing step that
enables one to submit the current input to a statistical test
for the presence of structure. Here we perform the
training procedure for natural images without applying
gaussian replacement. We use precisely the same training
procedure and precisely the same training set of images
as in the previously described training procedure in
which gaussian replacement was applied.

The result of omitting gaussian replacement in the
training procedure is shown in Fig. 7. The resulting
receptive fields have been ordered in terms of their
average response energy to the test images. The new
basis is very similar to the basis obtained using gaussian
replacement.

Results

That the new receptive fields are at least as sensitive to
the characteristic structures in natural images is indicated
by a simulation in which this new ensemble of receptive
fields is applied in the structure test to the test images.
Thus, although gaussian replacement was not used in the
training procedure that yielded the receptive fields B
shown in Fig. 7, we can nonetheless use gaussian
replacement in the context of the structure test to test
the sensitivity of B to characteristic structures in the
population of natural images. The total number of test
patches was 19 160, of which 92 were rejected because
they were uniform in intensity, leaving a total of 19 068
patches to which the structure test was actually applied.
The average p-value across these images was 0.023, and
the null hypothesis that input pixels were jointly
independent, identically distributed random variables
was rejected at the 0.005 level of significance for 89.26%
of the images.
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Evaluation of the results

The results without gaussian replacement are at least as
good as were previously achieved with the basis obtained
with the training procedure that used gaussian replace-
ment. This suggests that gaussian replacement during
training is not crucial to the detection of structure.
However, to test the effectiveness of the resulting
receptive fields, gaussian replacement is required in the
context of the structure test. It is worth noting, however,
that irrespective of how one obtains a given orthonormal
basis B, the structure test (which crucially involves
gaussian replacement) provides a useful new tool for
assessing the sensitivity of B to the structures in a given
image population P. One can use any candidate
orthonormal basis B in applying the structure test to a
random set of test images from P. B’s sensitivity to the
characteristic structures of P is gauged by B’s overall
effectiveness at rejecting Hy in the structure test.

Finally, we submit that people are extremely sensitive,
not just to characteristic structures in the environment,
but to the absence of such structure when some
generative aspect of the visual input is random. For
instance, we easily sense that the precise locations of
leaves on a bush are random. For purposes of responding
adequately to stimuli, it is critical to be able to
discriminate such random aspects of the visible world
from those that are systematic. Gaussian replacement, or
some analogous strategy for statistical certification,
would be very useful for making such judgments.

BICONVERGENT SDPS

The SDPs used in the preceding sections have several
interrelated weaknesses. First, the structure test is not
used to guide the development of the basis B; it is used
only to assess the efficacy of B at rejecting Hp for the
current image x. To steer the evolution of B, each of the
previous SDPs has made use of an update transformation
Iy (“The tuning procedure”) that was designed to drive
the histogram of receptive field outputs away from
normality by increasing its kurtosis. Although the results
obtained in our previous simulations validate this strategy
(insofar as they have yielded Bs that were able to reject
Hj with a success rate greater than chance), the strategy is
nonetheless ad hoc. There certainly is no guarantee that
the optimal way to drive a response histogram away from
normality is by increasing its kurtosis.

It is useful to review the precise procedure that was
used to generate receptive field histograms (of ever
increasing kurtosis) before considering procedures that
generate optimum histograms (for rejecting Hp). Con-
sider a new image x. Let g be a particular realization of
random gaussian replacement G(x), and let b be a row
vector of the basis of receptive fields B; ie., b is a
particular receptive field. Previously, B was updated to
drive the receptive field response (a real number) b-g
away from zero if 1b-gl>1 and towards zero otherwise.

The biconvergent SDPs described in this section
impose no a priori assumptions about receptive field
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response histograms. Biconvergent SDPs simultaneously
discover a basis B concurrently with an associated
histogram distortion template £, such that B and f together
are used to reject Hy in a histogram-specific structure test.
No a priori assumption is made about how receptive field
responses should be altered to achieve a non-gaussian
receptive field response histogram.

The basis B and the histogram distortion template f
evolve in tandem, each influencing the refinement course
of the other. The emerging function f embodies informa-
tion about the ways in which the histogram of receptive
field outputs Bg deviates from normality; this f~embodied
information is essential in guiding the evolution of B. In
turn, the histograms of the receptive field outputs Bg are
essential in refining f. The two structures B and f thus
crystallize co-dependently.

Throughout this section, we assume an image popula-
tion P from which images x, each comprising N pixels,
are drawn at random. G(x) continues to denote the
gaussian replacement of image x, and g will denote a
specific realization of the random image G(x). As usual, B
denotes an N x N orthonormal basis subject to modifica-
tion by an SDP. H; denotes the null hypothesis that the
current image x is structureless.

The structure test used by a biconvergent SDP

To evaluate the gaussianness of a histogram and to
create deviations of a given histogram from a gaussian
histogram, it is convenient to operate in an interval (—1,
1) in which the expected histogram of a gaussian
distribution is flat. To move the histogram problem into
this space, we note that for any random variable Y with
continuously increasing distribution function F, the
random variable F(Y) is uniformly distributed on (0, 1).
It is much more convenient to operate on the random
variable U = 2F(Y) — 1 which is uniformly distributed on
(=1, 1) than on Y itself. As previously noted, under Hy,
the receptive field outputs y = Bg are standard normal
IID. In this case, for @, the standard normal distribution
function, the pointwise transformed receptive field out-
puts u = 2d o y — 1 consist of jointly independent random
variables, all uniformly distributed on (-1, 1). Thus,
under Hy, the expected histogram of u is flat across the
interval (—1, 1).

As above, let g be a realization of G(x) for an input
image x. Let y be the vector of receptive field responses:

y=Bg (15)

Correspondingly, u indicates the vector of pointwise
transformed receptive field outputs:

u=2poy—1. (16)

We shall sometimes use the symbol u without
explicitly introducing the corresponding input image x
and vector y of receptive field outputs. The important
thing to remember is that under Hy, y is standard normal
IID, and u is also IID, uniformly distributed on (—1, 1).

Let f be a histogram distortion template (see “Pre-
liminary definitions”). It is immediately apparent from
Eq. (2) that, for any random variable U uniformly
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FIGURE 7. Applying an SDP to natural images without gaussian replacement. The receptive fields of basis Byal, derived from
applying an SDP to a sequence of randomly chosen, 16 x 16 pixel patches of natural image without gaussian replacement.

distributed on (—1, 1), E[fU)] =0, and var[AU)] = 1.
Under Hy, the transformed receptive field outputs fou
consist of jointly independent, identically distributed
random variables all with mean 0 and standard deviation
1. When the number of pixels N in an image is
moderately large, the Central Limit Theorem implies
that the statistic:

A = =3¢ o)l
VN
=1

will have, approximately, a standard normal distribution,
where j is an index over receptive field outputs. If Hy is
false, and the vector u is not actually uniform IID, but
rather tends to concentrate values primarily in regions of
(—1, 1) where fis positive, then A¢(1) will tend to assume

(17)

large values. For this reason, we call A¢(u) the f-distortion
of u.

The biconvergent SDP seeks to derive a basis B with an
associated histogram distortion template £, such that the f-
distortion of u is consistently, improbably high across
different input images x. The structure test rejects Hyp for
a given image x if the p-value, p=1 — ®(A¢ (1)) is less
than some critical value (we arbitrarily adopt a critical
value of 0.005 in reporting simulation results). In other
words, the structure test applies a positive, one-tailed z-
test to Ag(u) to test Hy for input image x.

The coding of histogram measures

Before we discuss the search procedure used by
biconvergent SDPs, we should mention that the histo-
gram distortion templates used in the SDPs to be
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(a)

Begin

!

Initialize Receptive Field Basis B,
and Histogram Distortion Template f,

!

l Input New Image x ‘4———

Update Receptive Field Basis B, to B,,,
and Histogram Distortion Template f; to f,,,

p-value p

ufj} \” Generate u using w, p and f;
S target £ P i
" Receptive field j 1 (D_,(“mrget +1
. 2
@ Ueargerd } 2
BN TIHITN 0TI B v
h Receptive field | Ytarget Ry,ymgetBi

SN BHEEOMERE

htargct

. . . -1 R /-\ ] o £ 1
Generate histogram distortion template £ {rom . l — U I N
i

FIGURE 8. The flow of processing in a biconvergent SDP. (a) Global flow of control in a biconvergent SDP. (b) The processing
that occurs in updating B; to B;y; and f; to fiy;. Input image x is transformed into a realization g of G(x), the gaussian
replacement of x. Receptive field basis B; is applied to g to produce the vector y of receptive field responses. Under Hy, the
vector u=2®oy — 1 contains jointly independent coordinate values, all uniformly distributed on the interval (-1, 1). Again,
under Hy, the f;-distortion of u, A¢, (), is a standard normal random variable. Thus, 1 — ®(Ay, (u)) is the p-value resulting from a
positive one-tailed z-test applied to the f;-distortion of u. We proceed to generate a Vector g in the neighborhood of u, but
with greater f;-distortion than w. fi is produced by: (i) generating a histogram distortion template f tuned specifically to the
various concentrations of values in /g, the histogram of i ; and then (ii) taking a weighted sum of f with fi, where the sum
is heavily dominated by the prior histogram distortion template f;. To produce the new receptive field basis B;.;, we first

|

o | (ap)f + (1 - op)f, Normalize

transform uy;ger IN1O Yyarger = &1 (W} - Yurget Is @ vector of receptive field outputs similar to y, but such that the fi-distortion

of 2@ © Yyayger — | is greater than that of 20 oy — 1. Then we set By = Ry, Bi. This has the desired result that B;1£ = Yiargets
making B;.; more effective at rejecting Hy for x than was B;.
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described are linear combinations of the Legendre
polynomials of orders 1 through 12, which we shall
denote A;, 43,..,413. The Legendre polynomials are
chosen for convenience; other coding schemes would
doubtless serve as well. These functions are orthonormal
on the interval (—1, 1). That is, for j, k € {1, 2,...,12},

" 1 ifj=k
J_l (r)Me(r)dr = {0 otherwise. (18)
Any histogram distortion template
12
f= kz:lwk)\k (19)

satisfies Eq. 2(a) by dint of the fact that Eq. 2(a) is
satisfied by each of the Legendre polynomials Ay, k=1,
2,..., 12. To insure that f satisfies Eq. 2(b), we must have
wl= 1, for w= (wy, wa,..., wi2).

In the biconvergent SDPs to be described, histogram
distortion templates are coded by their Legendre poly-
nomial coefficients. For example, the histogram distor-
tion template f of equation (19) would be coded by the
vector w. We call w the Legendre code of f.

The search procedure used by biconvergent SDPs

The search procedure used by a biconvergent SDP is
diagrammed in Fig. 8. The overall flow of control is given
in Fig. 8(a). As this figure indicates, images x are read in,
one at a time, and are used to update both the current
basis of receptive fields, and also the current histogram
distortion template. The complexities of the process are
all embedded in the Update box of Fig. 8(a). The details
of the processing that occurs in this Update box are
presented in Fig. 8(b). In Fig. 8(b) B; and f; denote the
basis of receptive fields and associated histogram
distortion template that resulted from iteration i — 1 of
the SDP.

Initialization. At the start of training, By is initialized to
a random, N x N, orthonormal basis, and the Legendre
code of fj is initialized to a random, normalized vector of
length 12.

The update procedure (Fig. 8b). Each training trial
proceeds as follows. Input image x is first transformed
into the image g, a realization of the gaussian replace-
ment G(x). The basis B; is then applied to g, yielding a
vector y of receptive field outputs. (Under Hy, y is
standard normal IID.) Vector y is converted into vector u
by applying the pointwise transformation u = 2®oy — 1.
(Under Hy, u is IID, with each component uniformly
distributed on (—1, 1).) Next, we apply the structure test,
computing the f; — distortion of u, As(u), and the
associated p-value, p = 1-®(As(w)).

These computations can be regarded as preliminary to
the production of B;.; and f;;;. This process, which
begins directly after the structure test, involves the
following main steps:

1. An update vector of transformed receptive field

outputs Upger (with pixel values confined to the
interval (—1, 1)) is selected in the neighborhood of u

C. CHUBB et al.

so that the f;-distortion of uyg is greater than the f;-
distortion of u:

A (ttarger) > A (u). (20)

Thus the target p-value Prarget = 1 — D(Ap (Utarger)) is
less than p.

2. Then, as in the previous SDPs, B; is updated so that
applying B; to g results in a p-value equal to Drarget
(which is lower than the p-value p obtained by
applying B; to g). Specifically, applying B, to g
yields a vector yupe of receptive field outputs
(instead of the receptive field outputs y produced by
applying B to g) such that 2® o yype — 1 = Urarget
whereas previously 2@ oy — 1 = u.

3. The updated histogram distortion template f;; is
produced by taking a weighted average of the
previous distortion template, f;, with an estimate of
the histogram distortion template that would
optimally reject H, for the updated, transformed
receptive field outputs Urarget -

Choosing the updated, transformed output vector
Usarger- Let f] denote the derivative of f;. To obtain the
Usarger, TOT €ach receptive field j, we first set

ﬁtargct[j] =
ulj] + sign (f/ (u[j]))ap if — 1 < this value < 1,

0.9999999999 if the above value > 1,
—0.9999999999 otherwise,

(21)

where p is the p-value obtained from the structure test
applied to x at the beginning of this training trial, and « is
a parameter governing the size of the adjustments made
to B;. At the start of training « is relatively large (0.05 in
our simulations); whereas, by the end of training, when
the refinement of B; is nearly complete, « is small (0.0005
in our simulations). All adjustments to o are scheduled
prior to the beginning of training.

The image iaper has the desired property that
At (facger) > At (u). As the corresponding vector iarger
(given by equation (22)) may not have the same length as
¥, it is normalized. Toward this end, we set

. - u +1
Ytarget = d'o l:%] ) (22)
and then set
Ytarget = I)A’tljr)glctlymget. (23)

The norm adjustment performed in equation (23)
insures that yi,ee; can be reached by a rotation from y (the
original vector of receptive field outputs). We now set

(24)

There are a few things to note about equation (21).
First, almost all values ligge[j] are shifted by exactly the
same distance from their respective starting values u[j].
The only exceptions are those coordinate values that end
up being either 0.9999999999 or --0.9999999999
because their corresponding u coordinate values were

Utarget = 290 Ytarget — 1.
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very close to either 1 or —1. The direction of the shift
follows the sign of f’s derivative. The histogram
distortion templates that can be achieved as linear
combinations of the Legendre polynomials of order 1
through 12 all have relatively slowly changing deriva-
tives (attaining at most 13 extrema over the interval (-1,
1)). Thus, if « is relatively small, we have

fillarged 1) > fi(u[1]) (25)

for almost all pixels j. The only exceptions will be those
pixels j for which the value u[ j] happens to be so close to
a maximum of f; that e[ /] ends up on the opposite
side of that maximum, lower in value than u[j]. The
update image uuger Will be nearly identical to Ugaget,
conferring high probability to the event that the
fi-distortion of uee; Will be greater than the f;-distortion
of u:

N N
A (tiarger) :Z(fz © trarget) /] >Z(ft ou)[jl = Ar,(u).
j=1 j=1

(26)

Updating B;. In the course of producing update image
Warget, WE also produce target receptive field output
VECHOT Yyarge; [given by equation (23)]. We now set

BH_] - Ry Bi. (27)

[See equation (5) for the definition of Ryy, ..] This
assignment has the desired effect that B; | g = Yiarger, and
hence that 2® o yiuger — 1 = iarger, leading to the result
that the p-value produced by applying the structure test to
image x, using basis B;;; with histogram distortion
template f; will almost certainly be smaller than the p-
value obtained using basis B; with histogram distortion
template f;.

Updating f;. Following convention, let é denote the
delta function: i.e., 6(0) is an impulse of infinitesimal
width and unit area (hence infinite height), whereas
o(r) =0 for all r # 0. Thus, for any function R — R,

| st yar =50

»Ytarget

(28)

Let hyarger denote the irregular comb function given for
any r € (—1, 1) by

htarget(r) = Z 6(’ - utarget[i])- (29)
=1

Think Of /et as the histogram of uarger (With bins
infinitesimal in width, and all bins with frequency O,
except those located precisely at values ugrge[f], Which
have frequency 1).

We next compute the projection of Ayger into our space

of candidate histogram distortion templates. Specifically,
we set

12
f= Z Wi Ak, (30)
=1

where the Legendre code w = (w;, wy,..., wiz) of fis
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obtained by normalizing the vector w =(w;, Wy, ..., W12),
whose coordinates are given by

1 N
Wy = htarget - Ak :J /\k(r)hta.rget(r)dr :Z )\k(uta:gel[i])-
1 -

=1

(31)
Thus, fis the histogram distortion template (available
in the space of candidate templates) that correlates most
strongly with the update image histogram, Aggger.
Consequently, f will tend to have maxima at points in
(=1, 1) where hgec has high concentrations of spikes,
and minima where hger has low spike concentrations.
Of course, we want ;.. to be influenced primarily by f;,
and only mildly affected by the current distortion
template, f. Accordingly, we set

fin1 = (ap)f + (1 = op)f; (32)

where, as in equation (21), « is a parameter that ranges,
according to a preset schedule, from 0.05 down to 0.0005
over the course of training, and p is the p-value derived
from the structure test at the beginning of the current
training trial.

Finally, note that the order in which B;,; and f;,; are
produced makes no difference. Each is generated
independently from ucger.

A SIMULATION USING A BICONVERGENT SDP

A biconvergent SDP using the update procedure
described in the previous section was applied to the
same body of natural images as was used in the
simulation of the section entitled “Discovering structure
in natural images with an SDP”.

Image selection

In this simulation, we used essentially the same image
set as was described in “Discovering structure in natural
images with an SDP”. The only difference was as
follows: in the previous simulation, 0.5% of the images
were removed from the testing and training sequences
because they were uniform in intensity (all 16 x 16 pixels
assumed the same intensity), and hence literally devoid of
structure. These patches were left in the set for the current
simulation. This places the biconvergent SDP at a
disadvantage compared with the previous SDP; however,
as will become evident, the procedure is quite robust with
respect to the inclusion of such structureless images.

Assessment

The sequence of training trials yielded:

1. The matrix Bgny whose receptive fields (basis
elements) are shown in Fig. 9.

2. The histogram distortion template shown in Fig. 10.

To assess the effectiveness of Bg,, in conjunction with
frinal at rejecting Hy, we proceeded to use Bgina With frinal
in applying the structure test to each patch in the testing
sequence (none of which had been presented during
training).



3362

C. CHUBB et al.

FIGURE 9. The basis Bin of receptive fields resulting from applying a biconvergent SDP to a training sequence of natural
images. Receptive fields are ordered in terms of their average contribution (across all images in the test sequence) to the fena-
distortion computed in the structure test.

Results

Overall performance. Hy was rejected by Bpy,y in the
structure test at the 0.005 level of significance, for 85.4%
of the patches in the testing sequence. The average p-
value over all patches in the testing sequence was 0.019.
These results are comparable with those obtained using
the non-biconvergent SDP in “Discovering structure in
natural images with an SDP”.

Resulting receptive fields B, and histogram measure
Jpna- The Legendre code for histogram distortion
template  fm. (Fig. 10) assigns  w; = —0.0107,
wy = —0.5070, w;=0.0161, wy=0.1945, ws=0.0021,
ws =0.3191, w;=0.0088, wg=0.3502, wo=0.0068,
wio = 0.3966, w;; = —0.0029, and w;; = 0.5682, where,
for i=1, 2,..., 12, w; gives the coefficient of A; in the

synthesis of f,,. The evident even symmetry of ff,q is
reflected by the fact that the coefficients of the odd-
symmetric Legendre polynomials, A;, A3,...,4;;, are all
near 0, whereas the coefficients of the even-symmetric
components are relatively large in absolute value. The
striking oscillations of the histogram distortion template
frinar are an artifactual consequence of the truncation in
our coding scheme for histogram distortion templates.
Jffinar contains a large amount of 4;2, which has 13 extrema
placed similarly to those of f5,4. The high contribution to
finat Of Aj2 reflects the usefulness in rejecting Hy of
endowing ff,; with steep, positive tails, and 4;; is the
highest-number A available.

The receptive fields of Bgpa, shown in Fig. 9, are
ordered in terms of their average effectiveness in
contributing to the rejection of Hy. Specifically, on each
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FIGURE 10. The histogram distortion template fg,, resulting from applying a biconvergent SDP to a training sequence of
natural images. Note the high values assigned near 1 and —1.

test trial i, foru=2®d oy — 1, with y = By, g, the quantity
fena(ulj]) was recorded for each receptive field j.
Srnal(ulf]) 1s the contribution of the j‘h receptive field to
the frna-distortion of u. The greater fena (#(j]) is, the more
effective the j receptive field is in helping reject Hy for
test image x.

The receptive fields shown in Fig. 9 are ordered
according to the average of fhna(u[j]) across all test
images. As is evident, the most effective receptive fields
are selective for low spatial frequencies; they do not,
however, seem to be very well tuned for orientation. Due
to the predominance of low spatial frequencies in natural
images, these receptive fields tend to produce responses
that deviate dramatically from 0. As a result, for such a
receptive field j, the value u[j] tends to occur very close
either to 1 or else to —1. The histogram distortion
template fiqa has a pair of high-valued tails that provide
sensitivity to these extreme values. Perhaps surprisingly,
the least effective receptive fields (those occurring at the
bottom of Fig. 9) seem to embody the highest degree of
evident structure. The majority of apparently structure-
less receptive fields in the wide central region of Fig. 9
are more effective than the receptive fields at the bottom
in rejecting Hy. The reason for this is that the receptive
fields sandwiched in the center are actually high-
frequency selective. Because natural images have little
energy in the high frequency range, these receptive fields
consistently give responses near 0. For such a receptive
field j, the random variable u[j] tends to take values very

near 0. The histogram distortion template ff,, has a local
maximum at O which provides sensitivity to the responses
of these receptive fields. By contrast, the nicely oriented
receptive fields at the bottom of Fig. 9 are tuned to a band
of spatial frequencies whose contribution to natural
images is in the range of what might be expected under
Hy. The smallest average contribution to rejection of Hy
(i.e., the smallest average value of frnq(2[/])) across all
test images, was 0.023, given by the receptive field shown
in the bottom-right corner of Fig. 9. The largest average
contribution to rejection of Hy was 2.20, given by the
receptive field in the top-left corner of Fig. 9.

DISCUSSION

The simulation described in the previous section
demonstrates that a biconvergent SDP can successfully
derive, in tandem, a histogram distortion template along
with an orthonormal basis of receptive fields that together
constitute an effective tool for rejecting Hy for natural
images. Note that the histogram distortion template ffiga
assigns

1. Large positive values in the neighborhoods of —1
and 1, in its extreme tails; and
2. Positive values in the neighborhood of 0.

These two observations imply that response histograms
produced by applying Bgina to natural images do, indeed,
tend to deviate from normality in being overly kurtotic.
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FIGURE 11. The histogram of receptive field responses obtained by applying the basis Bron—bioconvergen: (derived by the non-

biconvergent SDP in the section entitled “Discovering structure in natural images with an SDP”) to a sequence of 80, 16 x 16

patches of natural image. Responses r have been transformed into values v = 2®(r) — 1. Under H,, the transformed values v

should be uniformly distributed on (—1, 1). Note the very large spikes near —1 and 1, indicating that transformed responses v

tend to take extreme values with high probability. Note also the similarity between this histogram and the histogram distortion
template (Fig. 10) discovered by the biconvergent SDP.

The SDP implemented in ‘Discovering structure in
natural images with an SDP’ assumed a priori that
response histograms of natural images will have high
kurtosis. The biconvergent SDP was able to discover it.

This point is underscored by Fig. 11. Let
Bron—biconvergent denote the basis derived by the SDP
applied to natural images in “Discovering structure in
natural images with an SDP”. To generate Fig. 11, each
image x in a sequence of 80 natural image patches was
transformed into g=G(x); then Bion_biconvergent Was
applied to g, and the vector of receptive field responses
¥ = Buon—biconvergentg Was pointwise transformed to pro-
duce u=2®oy— 1. Under Hy, each vector u should
consist of jointly independent random variables, all
uniformly distributed on (—1, 1). Figure 11 shows the
histogram of all 20480 =80 x256 receptive field re-
sponse values (coordinate values of the 80 vectors u). The
primary deviation of this histogram from uniformity
occurs in the tails, where we find extremely large spikes
indicating high frequencies for values very close to —1
and 1. In particular, note the similarity between this
histogram and the histogram distortion template (Fig. 10)
discovered by the biconvergent SDP in the section “A
simulation using a biconvergent SDP”.

The reader will have noted that the receptive fields
obtained by the biconvergent SDP (Fig. 9) do not seem as
sharply refined as the receptive fields obtained with the
non-biconvergent SDP. A comparison of Figs 10 and 11
suggests a possible explanation for this result. The

Legendre coding scheme used by the biconvergent SDP
severely limits the sensitivity to extreme values that it is
possible for a histogram distortion template to achieve. It
seems likely that these representational limitations may
preclude any very sharp refinement of the corresponding
basis of receptive fields.

Toward a more sensitive structure test

The structure test used by the biconvergent SDP could
be made much more sensitive than it currently is. To see
how, reflect that for some receptive fields j of Bgya, the
values u[j], accumulated over all test images x,
concentrate near O—this is the case for the high-
frequency receptive fields occurring in the middle of
Fig. 9. For other receptive fields j, the values u[j]
concentrate near 1 and —1—this is the case for the low-
frequency selective receptive fields occurring at the top
of Fig. 9. Still other receptive fields j yield values u[j] that
accumulate according to less easily defined patterns—
this is the case for the receptive fields at the bottom of
Fig. 9. As these observations suggest, for any given
receptive field j, there exists a histogram distortion
template f; that is uniquely sensitive to the histogram of
response values u[ j] yielded by receptive field j. In effect,
the current SDP implementation imposes the constraint
that all receptive fields share the same histogram
distortion template. Rather than computing A¢(u), how-
ever, one might define F to be a vector (fi, f2,..., fx) of
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histogram distortion templates, one for each receptive
field, and set:

N
Zel) = =D f(ul), (33)
=1

where u comprises the pointwise-transformed receptive
field outputs of the gaussian replacement of a given input
image from the target population. Equation (33) gen-
eralizes equation (17) used to define the statistic A¢. Like
A¢, ZF has a standard normal distribution under Hy. It is
clear, however, that for many image populations, Zg can
achieve much more power in rejecting Hy than A¢. Thus,
an important avenue of future research involves devel-
oping biconvergent SDPs that associate individual
histogram distortion templates with different receptive
fields.
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