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In three experiments, electric brain waves of 19 subjects were
recorded under several different experimental conditions for two
purposes. One was to test how well we could recognize which
sentence, from a set of 24 or 48 sentences, was being processed in
the cortex. The other was to study the invariance of brain waves
between subjects. As in our earlier work, the analysis consisted of
averaging over trials to create prototypes and test samples, to both
of which Fourier transforms were applied, followed by filtering
and an inverse transformation to the time domain. A least-squares
criterion of fit between prototypes and test samples was used for
classification. In all three experiments, averaging over subjects
improved the recognition rates. The most significant finding was
the following. When brain waves were averaged separately for
two nonoverlapping groups of subjects, one for prototypes and
the other for test samples, we were able to recognize correctly 90%
of the brain waves generated by 48 different sentences about
European geography.

The three experiments reported here extend our earlier work
(1, 2) on brain wave recognition of words and sentences in

three significant ways. First, more complex sentences requiring
an evaluation of their truth or falsity were used as auditory or
visual stimuli. Second, the number of different sentences pre-
sented to subjects was increased 4-fold to 48. Third, in several
different experimental conditions, brain wave data were aver-
aged across subjects. No such averaging was considered in our
earlier studies. Electroencephalographic (EEG) recordings of
brain waves were made in all three experiments. Relevant studies
of brain processing of language, especially through EEG record-
ings, were reviewed in refs. 1 and 2.

Methods
For all subjects, EEG recordings were made in our laboratory
using 22 model 12 Grass amplifiers and Neuroscan’s SCAN 4
software (SCAN 3 was used for experiment I; Neuroscan Inc.,
Sterling, VA). Sensors were attached to the scalp of a subject
according to the standard 10–20 EEG system, either as bipolar
pairs, with the recorded measurement in millivolts being the
potential difference between each such pair of sensors, or single
sensors referenced to the left or right mastoid; the distribution
of sensors on the scalp is shown in Fig. 3. For experiment I, the
recording bandwidth was from 0.3 to 100 Hz with a sampling rate
of 750 Hz for the syllable part and 384 Hz for the sentence part;
for the other two experiments, the recording bandwidth was
from 0.3 to 100 Hz with a sampling rate of 1,000 Hz. The length
of recording of individual trials varied with the experiments, as
described below.

A computer was used to present auditory stimuli (digitized
speech at 22 kHz) to subjects via small loudspeakers. Visual
stimuli were presented on a standard computer monitor.

Nineteen subjects participated in the experiments. We number
the subjects consecutively with the nine subjects used in refs. 1
and 2 because we continue to apply new methods of analysis to
our earlier data; S7 (from ref. 1) was also used as a subject.
Subjects S7, 10, 12, 13, and 18–23 were used in experiment I,
which took place in November, 1998; subjects S10–19 were used

in experiment II, which took place in January, 1999; and subjects
S10–13, 16, 18, and 24–27 were used in experiment III, which
took place in March, 1999, but S18 participated only in one of the
two conditions. Eight of the subjects were female and eleven
were male, ranging in age from 18 to 76 years. Two were
left-handed, and two were not native English speakers.

In the first part of experiment I, with S7, S10, and S13 as
subjects, on the basis of the results in refs. 1 and 2, only the
following six bipolar pairs of sensors were attached to the scalp:
C3–T5, C4–T6, T3–C3, T4–C4, T5–T3, and T6–T4. In the
second part, an additional sensor, Cz, in the bipolar pair Cz–T5,
was added to all nine subjects (S7 did not participate). In
experiment II, S10–15 and S19 had the following 16 sensors
attached to the scalp: Fp1, Fp2, F7, F3, F4, F8, T3, C3, Cz, C4,
T4, T5, P3, Pz, P4, and T6. S16–18 had 22 bipolar pairs: Cz–Fz,
Cz–F4, Cz–C4, Cz–P4, Cz–Pz, Cz–P3, Cz–C3, Cz–F3, Fz–Fp2,
Fz–Fp1, F4–Fp2, F4–F8, C4–F8, C4–T4, C4–T6, P4–T6, P3–T5,
C3–T5, C3–T3, C3–F7, F3–F7, and F3–Fp1. In experiment III,
all subjects had the 22 bipolar pairs.

In most of our analyses, starting with trial 2, we averaged data
for half of the total number of trials over every other trial, for
each sentence or syllable and each EEG sensor. Using all of these
even trials, this averaging created a prototype wave for each
sentence or syllable. In similar fashion, the odd trials were used
to produce a test wave for each sentence or syllable. This analysis
was labeled EyO (evenyodd). We then reversed the roles of
prototypes and test samples by averaging odd trials for prototype
and even trials for test. This analysis was labeled OyE. In ref. 1,
we performed both analyses for all cases, and the two did not
greatly differ. Here, as in ref. 2, the analyses were performed
only for EyO. We imposed this limitation because of the larger
data files for the sentences as compared to the isolated words
studied in ref. 1.

The main additional methods of data analysis were these.
First, we took the complete sequence of observations, for each
prototype or test, and placed the sequence in the center of a
sequence of 4,096 observations for the sentences or 2,048
observations for the syllables. We next filled the beginning part
of the longer sequence by mirroring the beginning part of the
centered prototype or test sequence, and we filled the ending
part by mirroring the ending part of the center sequence. Using
a Gaussian function, we then smoothed the two parts filled in by
mirroring. The Gaussian function was put at the center of the
whole prototype or test sequence with a standard deviation equal
to half of the length of the prototype or test sequence. Each
observation in the longer sequence that was beyond the centered
prototype or test sequence was multiplied by the ratio of the
value of the Gaussian function at this observation and the value
of the Gaussian function at either end of the centered prototype
or test sequence. After mirroring and smoothing, we applied a
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(discrete) fast Fourier transform to the whole sequence of 4,096
observations for the sentences or 2,048 observations for the
syllables for each sensor. (The fast Fourier transform algorithm
used restricted the number of observations to a power of 2.) We
then filtered the result with a fourth-order Butterworth bandpass
filter (3) as described in ref. 1. After the filtering, an inverse fast
Fourier transform was applied to obtain the filtered wave form
in the time domain.

As in refs. 1 and 2, the decision criterion for prediction was a
standard least-squares one. We first computed the difference
between the observed field amplitude of prototype and test
sample, for each observation of each sensor after the onset of the
stimulus, for a duration whose beginning and end were param-
eters to be estimated. We next squared this difference and then
summed over the observations in this interval. The measure of
best fit between prototype and test sample for each sensor was
the minimum sum of squares. In other words, a test sample was
classified as matching best the prototype having the smallest sum
of squares for this test sample.

Using this procedure of analysis, we estimated four parameters
for each subject in each of the conditions in the three experi-
ments. First, we estimated the low frequency (L) and the high
frequency (H) of the optimal bandpass filter (‘‘optimal’’ defined,
as in refs. 1 and 2, in terms of correct recognition rate).
Simultaneously, we estimated, again for the best recognition
rate, the starting point (s), after the onset of the stimulus, and
ending point (e) in ms of the sample sequence of observations
used for recognition, with the same s and e for a given set of
stimuli to be recognized. These methods of analysis are sum-
marized in Table 1. The parameters s and e are omitted in the
tables, because quite often the gradients were too flat to make
the selection of s or e other than arbitrary within a couple of
hundred milliseconds. Means only of s and e are given in Results
for experiments II and III. Some typical recognition-rate sur-
faces are shown in ref. 2. In Tables 2 and 3 (see below), the best
EEG sensor, or bipolar pair of sensors, is shown in the second
column of data for each condition, and the optimal bandpass
filter is shown in the third column. The first column of data in
Tables 2 and 3 shows the recognition rates achieved, expressed
in percent.

To test the hypothesis that it is averaging per se, not averaging
across subjects as such, that improves recognition rate by elim-
inating noise, we constructed for each condition (experiments II
and III) a ‘‘typical’’ subject (TypUS or TypBS, U for unipolar, B
for bipolar), having 10 trials on each stimulus in each condition
and each experiment by selecting the third and seventh trials
from the five subjects who had the highest recognition rates, with
a variation for the three bipolar subjects in experiment II.

Experiment I: Exploratory
Procedures. In experiment I, which was meant to be exploratory,
the first part consisted of auditory presentation to three subjects
of 8 syllables such as pa and to, and 24 syllable pairs, such as paba.
The list of 32 stimuli was randomly presented 12 times in the first
session, and, after a short break, 13 times in the second session,
for a total of 800 trials. Subjects were instructed to listen
carefully to the syllables, but no overt response was required. The
interstimulus interval was 2,050 ms.

In the second part of experiment I, also exploratory, 24
different sentences were presented auditorily at a natural didac-
tic pace in 10 randomized blocks, with all 24 sentences in each
block. The 24 sentences were statements about commonly known
geographic facts of Europe, with half of the sentences true, half
false, half negative, and half positive, e.g., The capital of Italy is
Paris and London is not the largest city of France. The possible
forms of sentences were: X is W of Y, X is not W of Y, W of Y
is X, W of Y is not X, X is Z of X, X is not Z of X, where X [
{Berlin, London, Moscow, Paris, Rome, Warsaw}, Y [ {France,
Germany, Italy, Poland, Russia}, W [ {the capital, the largest
city}, and Z [ {north, south, east, west}. The maximum length of
the 24 sentences was 2.59 s, and the minimum length was 1.35 s.
The mean length was 2.18 s with a standard deviation of 0.30 s.
After a spoken sentence was heard by the subject, the subject was
asked to orally respond ‘‘true’’ or ‘‘false,’’ with the sentences and
responses being recorded in real time on tape. The interval
between onset of successive sentences was 4,050 ms.

Results. Because this experiment was exploratory in terms both
of stimuli and method of response, we summarize the results
briefly, with an emphasis on the averaged results. For the first
part, with 32 syllables as spoken stimuli, we used 416 of the trials
to create 32 prototypes and the other 384 trials to create 32 test
samples, for each of the three subjects. We were able to correctly
identify 47% of the test samples for S7, 35% for S10, and 28%
for S13. Averaging the data from all three subjects led to an
improvement in recognition rate to 59%.

In the second part of the experiment, for the 24 spoken
sentences, each sentence repeated 10 times, we obtained the
following recognition results when we averaged for each subject
every other of the 10 trials for each sentence as a prototype and
the remaining half to form two test samples for each sentence.
For recognition purposes, the best subject was S18, with a rate
of 44% (21y48)—this subject was also the best in experiment II
(see Table 2). The worst rate, at 21%, was from S19. Averaging
the data over seven subjects (omitting two because of format
problems) and having only one test sample, instead of two, to
have more averaging, we obtained a recognition rate of 67%
(16y24), which exceeded the best individual result by a surprising
23%.

Experiment II: Twenty-Four Sentences
Procedures. In experiment II, 24 sentences were presented visu-
ally, one word at a time in 10 randomized blocks, with the same
timing sequence as the identical spoken sentences that were used
in the second part of experiment I and as part of experiment III.
In particular, the onset time of each visual word was the same as
the onset time of the corresponding auditory word, measured
from the beginning of the stimulus. The offset of the last word
of a visually presented sentence was at the same time as its offset
when presented auditorily. Only one visual word was shown at a
time on the screen; the screen was not blanked out between
words.

After a visual sentence was presented to the subject, the
prompt ‘‘??’’ appeared on the screen for the subject to respond.
Because of problems with the variability of the oral response in
experiment I, in experiment II, the numerical keypad was used

Table 1. Steps of data analysis

Step

1 Average over trials, half for prototypes, other half for test
samples

2 Mirror and smooth with a Gaussian function
3 Fast Fourier transform prototypes and test samples
4 Filter the results with a fourth-order Butterworth bandpass filter

having parameters (L, H)
5 Inverse fast Fourier transform
6 Classify by least-squares criterion, for observations in a given

temporal interval (s, e)
7 Repeat steps 4–6 with new parameters (L9, H9, s9, e9) from a set of

values selected on past experience until the set is exhausted
8 Select best recognition performance and corresponding

parameters
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by subjects to respond, with 1 5 true and 2 5 false. The
interstimulus interval was 4,050 ms. If a response was not
received in time, the system gave the subject an additional 1 s.
If no response was received 5 s after the onset of the sentence,
the next sentence began and the absence of a response was
flagged and stored as 0.

Results. In ref. 2, we studied the brain waves generated from
hearing 12 three-word sentences. In the present experiment,
following the exploratory effort in experiment I, we doubled the
number of sentences to 24, increased their complexity and
length, and required that subjects evaluate the truth or falsity of
each visually presented sentence by pressing one of two keys on
the computer keyboard. The percent correct evaluations for each
subject and mean latencies of correct and incorrect key responses
are shown in Table 2. Each of the sentences, such as Berlin is not
west of London was easy for subjects to evaluate, but the pace of
presentation was brisk enough to make all subjects answer
incorrectly some of the time, the best percent being 98 and the
worst 52. A similar individual range is noticeable in the mean
latencies of response. On the other hand, in spite of these
variations, all 10 subjects’ mean incorrect response latencies
were slower than those for correct responses.

The main results of this experiment, the brain wave recogni-
tion rates we obtained, are also shown in Table 2. By far the
best-performing individual subject was S18 with 100%. In par-
ticular, 24 test samples were recognized correctly when com-
pared to 24 prototypes, each prototype and test sample being the
average of 5 trials. The wide range of success we had in
recognition is shown by the lowest result of 25% for S15. On the
other hand, for 5 of the 10 subjects we were able to recognize
more than 70% of the test samples.

The sensors, bandpass filters, and optimal time intervals for
individual subjects show the variations found in our earlier
studies (1, 2), and also the predominance of optimal sensors
being T5, and its dual, T6, along with F4, P3, P4, and C4. The
unipolar mean s (starting time after onset of stimulus) of optimal
time interval was 219 ms and the unipolar mean ending e was
2,515 ms (the means were averaged over the 7 unipolar subjects).
The bipolar means, averaged over three subjects, were s 5 150
ms and e 5 2,833 ms.

In this experiment, we averaged together, first, the unipolar

group of seven subjects and then, separately, the three bipolar
subjects. For the ‘‘typical’’ unipolar subject (two trials from the
highest five subjects), we recognized 38% of the test samples, but
when all seven were averaged together (each prototype and test
sample being the average of 35 trials), we got 88%. In the bipolar
case, for the ‘‘typical’’ subject, with four trials from S18 and three
each from S16 and S17, we recognized 75%. When all three
subjects’ data were averaged (each prototype and test sample
being the average of 15 trials), we got the same as for S18 alone,
namely, 100% (24 correctly recognized out of 24 test samples,
one test sample for each sentence).

Experiment III: Forty-Eight Sentences
Procedures. Experiment III, which used the true–false response
procedures of experiment II, included two sessions on different
days, one with spoken sentences and one with the same sentences
presented visually, as in experiment II. Experiment III used the
24 sentences of experiment II, but extended the number to 48,
presented in 10 randomized blocks, with all 48 sentences in each
block. We added city and country names to increase the pool of
possibilities, and added the forms Y is Z of Y and Y is not Z of
Y. New city names were Athens, Madrid, and Vienna, and the new
country names were Austria, Greece, and Spain. Of the 48
sentences, the maximum sentence length was 2.59 s, and the
minimum length was 1.35 s. The mean length was 2.27 s, with
standard deviation 0.31 s.

The corresponding visual presentation of the 48 sentences
matched the timing of the spoken sentences, as described above
for experiment II. The interstimulus interval and the use of the
numerical keypad for responding were also the same as in
experiment II. Of the nine subjects who were in both conditions,
five began with the auditory condition and four with the visual
one.

Results. This experiment differs from experiment II in two
important respects. First, we doubled the number of different
sentences to 48. Second, we ran each subject on both the auditory
and visual conditions, with the exception of S18, who ran only on
the auditory condition. The two conditions, as described earlier,
were closely matched, with the words appearing one at a time in
the visual condition on a temporal schedule that matched the
pacing of the spoken speech for each sentence in the auditory
condition. We note that reading one word at a time, without any
eye movements, has been shown to be the most effective fast way
to read for detailed content (4). What is surprising is that our

Table 2. Experiment with 24 sentences

Subject % Sensor Filter (Hz)

Correct
answer,

%

Mean latency (ms)

Correct Incorrect

S10 79 T5 3–8 70 1,027 1,046
S11 83 P3 2–6 93 1,019 2,125
S12 71 T6 4–10 98 753 1,353
S13 54 P3 1–6 95 600 907
S14 38 T5 3–14 90 584 835
S15 25 T5 2–21 52 1,344 1,636
S16 58 Cz–P3 1–9 91 819 1,245
S17 38 F4–Fp2 2–14 92 1,085 2,198
S18 100 P4–T6 0.5–10 94 787 1,004
S19 75 T5, T6 1–17 88 1,059 1,508
TypUS 38 T5 2–12
TypBS 75 C4–T6 2–8
AvgUS 88 T6 3–10
AvgBS 100 C4–T6 2–14
SepAS 83 C4 2–10

All sentences were visual. TypUS, typical unipolar subject; TypBS, typical
bipolar subject; AvgUS, averaged unipolar subjects; AvgBS, averaged bipolar
subjects; SepAS, separately averaged subjects.

Table 3. Experiment with 48 sentences

Subject

Auditory Visual

% Sensor Filter (Hz) % Sensor Filter (Hz)

S10 23 C4–T4 2–6 56 C3–T5 1–15
S11 10 F4–F8 2–14 29 C3–T5 2–5
S12 15 Cz–P4 2–21 60 Cz–P4 1–9
S13 15 F3–F7 7–14 40 C3–T5 0.5–11
S16 15 C3–T5 2–21 38 P4–T6 2–6
S18 25 C3–T3 3–12
S24 25 C3–T5 1–7 56 P4–T6 1–7
S25 17 F3–F7 5–6 35 C3–T3 1–8
S26 13 F3–F7 2–21 79 C4–T6 1–15
S27 19 C4–T4 2–4 38 Cz–P3 1–14
TypS 19 C3–T5 2–8 38 C3–T5 3–5
AvgS 58 C3–T5 2–7 98 C4–T6 2–6
SepAS 27 C3–T5 1–10 90 C4–T6 2–8
MixP 17 C3–T5 3–10 77 P4–T6 1–10

TypS, typical subject; AvgS, averaged subjects; SepAS, separately averaged
subjects; MixP, mixed prototype.
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recognition rate was so much better for the brain waves in the
visual condition than in the auditory condition. As can be seen
from Table 3, the results were better for all nine subjects, and
even more surprising, the recognition-rate percent was at least
twice as great for all nine subjects. We have no clear explanation
of this highly significant difference. The corresponding compar-
ison of the same two conditions in ref. 1 was not nearly so
one-sided. One important difference was that in the present
experiment, subjects were required to judge and respond overtly
as to whether each sentence was true or false. In the earlier
experiment (1), subjects were asked only to silently repeat each
visual word displayed. We did try several additional methods of
analysis on the data for the auditory condition, e.g., normaliza-
tion of individual trials, but without any significant improvement.

The optimal filters and sensors for subjects are shown in Table
3, but not the optimal time intervals. For the auditory condition,
the mean s, averaging over subjects, all of whom were bipolar,
was 205 ms and the mean e was 2,710 ms. For the visual
condition, the mean s was 217 ms and the mean e was 2,544 ms.

The comparison of ‘‘typical’’ subjects, as defined earlier,
followed the same trend, with recognition rate of 19% for the
auditory condition and 38% for the visual condition.

As before, we also averaged brain waves from all subjects
together, using every other trial for prototypes and the remaining
trials for test samples. For the auditory condition, this massive
averaging produced a spectacular improvement, 58% correct
recognition of brain waves, which is more than twice the percent
achieved for any single subject. In the visual condition, there was
clear improvement from such averaging, but necessarily not as
much: 98% (47 of 48 test samples correctly recognized), as
compared to 79% for the best single subject, S26.

Two other averaging methods were used here and are shown
in Table 3. As would be expected, the Separate Average (SepAS)
did not do quite as well. This is when one group of subjects was
averaged for the prototype and the remaining group of subjects
was averaged for the test samples. The results were 27% for the
auditory condition and 90% for the visual condition, which is still
a good result, even though less than the 98% we obtained when
all subjects were averaged together (AvgS). This 90% is, in fact,
our best result for invariance of sentences, because no subject
contributed trials to both the prototypes and the test samples. In
Fig. 1, we plot the filtered and separately averaged waves for
prototypes and test samples for the two sentences The capital of
Italy is Paris and The largest city of Austria is not Warsaw.

To exhibit aspects of this invariance result in more detail, in
Fig. 2 we show the recognition-rate contour map of possible

Fig. 1. Prototypes and test samples generated by two sentences. (Upper) The
averaged, filtered brain waves for the sentence The capital of Italy is Paris. The
solid curved line is the prototype, and the dotted line is the test sample.
(Lower) The corresponding brain waves for the sentence The largest city of
Austria is not Warsaw. Both halves were from the bipolar pair of sensors
C4–T6. The x axis is measured in ms after the onset of the first word of the
sentence.

Fig. 2. Contour map of recognition-rate surface for bandpass filter param-
eters L and W for the separately averaged (SepAS) prototypes and test samples
in experiment III. The x coordinate is the low frequency (L) in Hz and the y
coordinate is the width (W) in Hz of a possible filter. The number plotted at a
point on the map is the number of test samples, of 48 possible, correctly
recognized with the Butterworth filter whose parameters are the coordinates
of the point. The prediction at that point is that of the best bipolar pair of
sensors, for that filter, so the surface shown optimizes the choice of bipolar
pair for the parameters of a given filter. The single best prediction, 43 of 48,
was made by the bipolar pair C4–T6.
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bandpass filters. The low frequency (L) of the filters is shown on
the x axis and the width (W) of the possible filters is shown on
the y axis. As can be seen, the best result is L 5 2 Hz and W 5
6 Hz, and so H 5 L 1 W 5 8 Hz, the high frequency of the
bandpass filter. The gradient around the peak of 43 of 48
sentences correctly recognized is smooth and gradual, but the
gradient along the L axis (i.e., the x axis) is clearly steeper than
along the W axis. The important point is that the smooth and
systematic behavior of the gradients in all directions from the
peak of 43 shows that this best result is not a statistical singularity
of a chance nature. More generally, the regularity of the contours
is sufficient evidence to decisively reject a null hypothesis of
random fluctuations as a model of the recognition data.

In Fig. 3, we show recognition-rate contour maps for the EEG
sensors, unipolar in the case of experiment II and bipolar in the
case of experiment III. The map on the left is for the 24-sentence
data of experiment II and that on the right is for the 48-sentence
data of experiment III. The maps show similar patterns, with
considerable symmetry between the left and right hemispheric
recognition rates, rather like the purely bipolar results reported
in ref. 2. The contour lines of the left are for recognition rates
of 5, 10, 15, and 20; on the right, with twice as many sentences,
for rates of 10, 20, 30, and 40. We note that the best result of
43y48 is, at 90%, greater than that for the 24-sentence case
(20y24, or 83%), although one would expect, a priori, a better
rate for the smaller set of sentences. In our view, the most
plausible explanation is that the 24-sentence experiment was
unipolar and the 48-sentence one was bipolar. This view is
supported by the generally better results for the three bipolar
subjects in experiment II compared with the results for the seven
unipolar subjects. Details on this point can be found in Table 2.

Finally, we used recorded brain waves from both conditions to
form a ‘‘mixed’’ prototype (MixP), half of the trials from the
auditory condition and half of the trials from the visual condi-
tion. We then used the other half of each condition to form 48
test samples, one for each sentence. The results, as shown in
Table 3, were 17% for the auditory condition and 77% for the

visual condition. Given the relatively poor results for classifying
the auditory condition, even when averaged altogether, we were
surprised at the 77% for the visual condition. It shows that the
features of the brain waves recorded under the visual condition
come through even in the presence of what is the apparently
more noise-prone waves recorded under the auditory condition.

Discussion
Averaging and Invariance. Various results we obtained in the three
experiments show that averaging EEG-recorded brain waves
across subjects can lead to much improved recognition rates. The
mere fact of this successful averaging across subjects supports the
view that the actual forms of brain waves for words and sentences
have an objective or invariant status, in the sense of being very
similar across subjects. Although not much previously investi-
gated, as far as we know, the result is not at all paradoxical, given
how easily the same speaker or printed text is understood so
quickly and easily by many different persons.

On the other hand, we are not claiming, and have not
demonstrated, that averaging across many trials for a number of
subjects is better than averaging across the same number of total
trials for one individual. In fact, our averaging over a small
number of trials and subjects to generate a ‘‘typical’’ subject did
not support the idea that averaging across subjects per se is
helpful. It seems likely the main effect is the total number of
trials. It is also obvious why we did not push this idea further. In
experiment III, with 48 sentence stimuli, it would have required
another 18 experimental sessions by a single subject to match the
total number of trials used in the two conditions.

The important conceptual point about averaging across sub-
jects is that in a number of cases it works well. To confirm still
further our findings on averaging, we went back to the data of ref.
1, the auditory condition with seven isolated words to be
recognized. We averaged all of the data for S3, S4, and S5, which
consisted of 300 trials for each word. Using half of the data for
each word as a prototype and the other half as a test sample, we

Fig. 3. Contour maps of recognition-rate surfaces for experiment II (Left) and experiment III (Right). Left shows 16 sensors of the 10–20 EEG system; Right shows
22 bipolar pairs of the 10–20 system. In both cases, the number plotted next to the location of a sensor (Left) or at the midpoint of the segment joining a bipolar
pair (Right) is the number of test samples of sentences correctly recognized.
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correctly recognized 7 of 7 test samples (100%), which is better
than any of the individual recognition rates reported in ref. 1.

Separate Averaging. Someone of a skeptical nature, ignoring the
positive point that we can average across different subjects,
might still say of our averaging results that in some sense it is not
surprising, since each subject in the average contributes trials to
both the prototype and test sample of a given type. It is in
anticipation of this response that we also used what we have
termed Separate Averaging, meaning that subjects averaged for
the prototypes are not the same as those averaged for test
samples in a given experiment. In particular, in experiment II,
with 24 sentences as stimuli, we got an 83% recognition rate, and
in experiment III, with 48 sentences as stimuli, a 90% recognition
rate in the visual condition, when we used Separate Averaging.
We emphasize again that no subject contributed data to both a
prototype and a test sample. The 83% and 90% recognition rates
are our most salient experimental results supporting the surpris-
ing objectivity of brain wave shapes across subjects.

William James (5) summarized well over 100 years ago the
general view about perception still held today: ‘‘. . . whilst part of
what we perceive comes through our senses from the object

before us, another part (and it may be the larger part) always
comes out of our own heads.’’ Without denying the subjective
aspects of much perception, in contrast to James’ emphasis, we
point to our evidence that electric activity in the cortex, lagging
a couple of hundred milliseconds, at the very most, behind the
auditory or temporally paced visual words of the sentences we
presented, has a very similar wave shape across subjects, espe-
cially when averaged and filtered to remove noise.

We recognize that, in averaging across individuals, we may
eliminate not just pure noise but information significant for a
particular individual. The presence of such additional informa-
tion, e.g., associative ties to personal memories, is not inconsis-
tent with our claim that words and sentences in and of themselves
have an approximately invariant brain-wave representation
across a large population of individuals using them.
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