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ABSTRACT Electrical and magnetic brain waves of two
subjects were recorded for the purpose of recognizing which
one of 12 sentences or seven words auditorily presented was
processed. The analysis consisted of averaging over trials to
create prototypes and test samples, to each of which a Fourier
transform was applied, followed by filtering and an inverse
transformation to the time domain. The filters used were
optimal predictive filters, selected for each subject. A still
further improvement was obtained by taking differences
between recordings of two electrodes to obtain bipolar pairs
that then were used for the same analysis. Recognition rates,
based on a least-squares criterion, varied, but the best were
above 90%. The first words of prototypes of sentences also were
cut and pasted to test, at least partially, the invariance of a
word’s brain wave in different sentence contexts. The best
result was above 80% correct recognition. Test samples made
up only of individual trials also were analyzed. The best result
was 134 correct of 288 (47%), which is promising, given that
the expected recognition number by chance is just 24 (or
8.3%). The work reported in this paper extends our earlier
work on brain-wave recognition of words only. The recognition
rates reported here further strengthen the case that record-
ings of electric brain waves of words or sentences, together
with extensive mathematical and statistical analysis, can be
the basis of new developments in our understanding of brain
processing of language.

This paper extends the work reported in ref. 1 on brain-wave
recognition of words to such recognition of simple sentences
like Bill sees Susan. A review of the earlier literature is given
in ref. 1 and will not be repeated here. But in that review we
did not adequately cover the literature on event-related po-
tentials (ERP) and language comprehension. A good, rela-
tively recent review is that of Osterhout and Holcomb (2),
especially the second half that focuses on sentence compre-
hension. Most of the past work on comprehension has been
concerned about establishing a reliable relation between
something like the N400 component of the ERP and the
semantic or syntactic context. For example, in a classic study
Kutas and Hillyard (3, 4) found that semantically inappropri-
ate words elicit a larger N400 component than do semantically
appropriate words in the same context.

The research reported here does not focus on event-related
potentials, but on the entire filtered brain waves recorded by
electroencephalography (EEG) or magnetoencephalography
(MEG) methods. The aim of the research is to recognize
correctly from brain-wave recordings which simple auditory
sentence was heard. Without analyzing semantic aspects yet,
we also address the question of identifying the brain waves of
individual words of a sentence.

METHODS

For subjects S8 and S9, EEG and MEG recordings were
performed simultaneously in a magnetically shielded room in
the Magnetic Source Imaging Laboratory (Biomagnetic Tech-
nology, San Diego) housed in Scripps Research Institute. (We
number the two subjects consecutively with the seven used in
ref. 1, because we continue to apply new methods of analysis
to our earlier data.) Sixteen EEG sensors were used. Specif-
ically, the sensors, referenced to the average of the left and the
right mastoids, were attached to the scalp of a subject, follow-
ing the standard 10–20 EEG system: F7, T3, T5, Fp1, F3, C3,
P3, Fz, Cz, Fp2, F4, C4, P4, F8, T4, and T6. Two electroocu-
logram and three electromyograph sensors were used, as in ref.
1. The Magnes 2500 WH Magnetic Source Imaging System
(Biomagnetic Technology) with 148 superconductive-
quantum-interference sensors was used to record the magnetic
field near the scalp. The sensor array is arranged like a helmet
that covers the entire scalp of most of the subjects. The
recording bandwidth was from 0.1 to 200 Hz with a sampling
rate of 678 Hz. For the two subjects, 0.3-s prestimulus baseline
was recorded, followed by 3.7-s recording after the onset of the
stimulus for S8 and 1.6 s for S9.

An Amiga 2000 computer was used to present the auditory
stimuli (digitized speech at 22 kHz) to the subject via airplane
earphones with long plastic tube leads. Stimulus onset asyn-
chrony varied from 4.0 to 4.2 s for S8 and from 1.9 to 2.1 s for
S9. To reduce the alpha wave in this condition, a scenery
picture was placed in front of the subject, who was asked to
look at the picture during the recording.

The two subjects, normal, right-handed male native English
speakers, aged 32 and 31 years, were run with simultaneous
16-sensor EEG and 148-sensor MEG recordings of brain
activity. The observations recorded were of electric (EEG) or
magnetic (MEG) field amplitude every 1.47 ms for each
sensor.

Both subjects were recorded under the auditory compre-
hension condition of being presented randomly one of a small
set of spoken sentences (S8) or words (S9), 50 trials for each
sentence and 80 trials for each word. Subjects were instructed
to passively but carefully listen to the spoken sentences or
words and try to comprehend them. The seven spoken words
used were the four proper names Bill, John, Mary, and Susan
and the three transitive verbs hates, loves, and sees. The 12
spoken sentences were constructed from the seven words. The
list is shown in the first column of Table 1, where the first letter
of each word is used to abbreviate the sentence. For example,
the entry in the first row of Table 1 is BHJ, which stands for
Bill hates John.

The verb is always represented by the middle letter, so in this
notation there is no ambiguity. The letter S stands for sees in
the middle position and stands for Susan at either end. For
subsequent comparison with the corresponding brain wave, the
beginning (si), after the onset of the stimulus trigger, and the
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end (ei) in ms, i 5 1,2,3, of each word of each sentence are given
in Table 1. From a linguistic standpoint the temporal lengths
of the spoken words in each sentence seem long, because we
used cutoff points of essentially zero energy in the sound
spectrum. There are, as can be seen from Table 1, short
silences between the words. The sentences were spoken slowly
with each word distinctly articulated. A key question, discussed
later, is whether or not these breaks are present in the
corresponding brain waves.

For each trial, we used the average of 203 observations
before the onset of the stimulus as the baseline. After sub-
tracting out the baseline from each trial, to eliminate some
noise, we then averaged data, for each sentence or word and
each EEG and MEG sensor, over every other trial, starting
with trial 2, for half of the total number of trials. Using all of
the even trials, this averaging created a prototype wave for
each sentence or word. In similar fashion, five test wave forms,
using five trials each for the sentences and eight trials each for
the words, were produced for each stimulus under each
condition by dividing all the odd trials evenly into five groups
and averaging within each group. This analysis was labeled
EyO. We then reversed the roles of prototypes and test
samples by averaging odd trials for prototype and even trials
for test. This analysis was labeled OyE. In ref. 1 we did both
analyses for all cases and the two did not greatly differ. Here
the analyses we computed were results only for EyO. We
imposed this limitation because of the larger data files for the
sentences as compared with the isolated words studied in ref.
1.

The main additional methods of data analysis were the
following. First, we took the complete sequence of observa-
tions for each prototype or test, both before and after the
stimulus onset, and placed the sequence in the center of a
sequence of 4,096 observations for the sentences or 2,048
observations for the words. Next, we filled the beginning part
of the longer sequence by mirroring the beginning part of the
centered prototype or test sequence, and the ending part by
mirroring the ending part of the center sequence. Using a
Gaussian function, we then smoothed the two parts filled in by
mirroring. The Gaussian function was put at the center of the
whole prototype or test sequence with a SD equal to half of the
length of the prototype or test sequence. Each observation in
the longer sequence that was beyond the centered prototype or
test sequence was multiplied by the ratio of the value of the
Gaussian function at this observation and the value of the
Gaussian function at either end of the centered prototype or
test sequence. After mirroring and smoothing, we applied a
fast Fourier transform (FFT) to the whole sequence of 4,096
observations for the sentences or 2,048 observations for the
words for each sensor. (The FFT algorithm used restricted the

number of observations to a power of two.) We then filtered
the result with a fourth-order Butterworth bandpass filter (5)
selected optimally for each subject, as described in ref. 1. After
the filtering, an inverse-FFT was applied to obtain the filtered
wave form in the time domain, whose baseline then was
normalized again.

As in ref. 1, the decision criterion for prediction was a
standard least-squares one. We first computed the difference
between the observed field amplitude of prototype and test
sample, for each observation of each sensor after the onset of
the stimulus, for a duration whose beginning and end were
parameters to be estimated. We next squared this difference
and then summed over the observations in the optimal inter-
val. The measure of best fit between prototype and test sample
for each sensor was the minimum sum of squares. In other
words, a test sample was classified as matching best the
prototype having the smallest sum of squares for this test
sample.

RESULTS AND DISCUSSION

Best EEG Recognition Rate for Sentences. Following the
methods of analysis in ref. 1, we estimated four parameters,
first, as in ref. 1, the low frequency (L) of the optimal bandpass
filter and the width (W) of the bandpass. Second, we estimated
the starting point (s) and ending point (e) of the sample
sequence of observations yielding the best classification result.
The parameters s and e were measured in ms from the onset
of the stimulus.

After some exploration, we ran a four-dimensional grid of
the parameters by using the following increments and ranges:
the low frequency L from 2.5 to 3.5 Hz in step size of 0.5 Hz,
the width W from 6.5 to 7.5 Hz, also in a step size of 0.5 Hz;
the starting sample point (s) from 0 to 441 ms after the onset
of stimulus with a step size of 15 ms, and the ending sample
point (e) from 1,911 to 3,381 ms with a step size of 15 ms. Note
that 10 observations equal 14.7 ms. We show s and e only in ms,
rather than number of observations. (To convert back to
number of observations, divide the temporal interval of ob-
servations by 1.47 ms.)

The best EEG result was correct recognition of 52 of the 60
test samples, for a rate of recognition of 86.7%. The param-
eters were: L 5 3 Hz, W 5 7 Hz, s 5 88 ms, e 5 2,455 ms. This
result is comparable to the results for the best two of the seven
subjects of ref. 1.

The best recognition rate of 86.7% was for sensor C3. In Fig.
1 we show the recognition rate for the 10–20 system of EEG
sensors, with isocontour lines of recognition. The variation in
sensors is quite large, ranging from nine for Fp1 to the 52 for
C3. But, as is well known, inference from location on the scalp
of the best sensor to the physical site of processing in the cortex
is difficult. What Fig. 1 makes clear is the importance of having
a sensor close to the optimal location on the scalp, whatever
may be the location of the source in the cortex of the observed
electric field.

In Fig. 2 we show a contour map, including the initial
exploration, of the recognition-rate surface for filter param-
eters L and W of S8. Again, the recognition-rate sensitivity to
parameter variation is high, comparable to that reported in ref.
1. In Fig. 3 we show a recognition-rate contour map for starting
and ending parameters s and e. Variation of parameters
around the best pair of values seems not as sensitive as in the
other two figures, but the scales used are not directly compa-
rable.

Bipolar Version of EEG Recognition. The virtues and
defects of bipolar analysis are discussed rather carefully in ref.
6, but not with respect to problems of recognition, as charac-
terized here. First, a matter of terminology, the standard 10–20
EEG system recordings are physically bipolar, for they record
the potential differences between each electrode vi on the scalp

Table 1. Beginning and end in ms of words in each sentence

s1 e1 s2 e2 s3 e3

BHJ 125 611 723 1240 1561 1990
BLM 156 614 894 1522 2099 2487
BSS 259 677 959 1645 2020 2489
JHS 99 664 1090 1514 1999 2525
JLM 129 805 1292 1912 2320 2758
JSB 70 650 1055 1712 2009 2351
MHB 30 580 963 1440 1763 2110
MLS 83 637 1029 1639 2049 2544
MSJ 71 614 914 1561 1806 2281
SHB 63 728 992 1458 1683 2004
SLJ 156 859 1385 2011 2473 3012
SSM 112 793 1084 1793 2289 2729
Min 30 580 723 1240 1561 1990
Mean 113 686 1032 1621 2006 2440
Max 259 859 1385 2011 2473 3012

Min, minimum; Max, maximum.
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and the reference electrode vr. But in EEG research bipolar
often refers to potential differences between two nearby
electrodes on the scalp. (However, here each bipolar pair was

not recorded as such, but obtained from the data by taking the
difference for each individual trial between the recordings for
two electrodes.) We define bipolar vij, where vi and vj, i Þ j, are
scalp electrodes as:

vij 5 (vi 2 vr) 2 (vj 2 vr) 5 vi 2 vj.

(Here we explicitly show vr to indicate how it is removed in the
subtraction.)

Using the same Fourier transform and filter analysis on the
bipolar vij, as was used above, we obtained slightly better
predictive results. Typical, and tied for the best, was 56 of 60
(93.3%) for electrodes C42T6, with the filter 2.5–9 Hz and the
temporal window from 29 to 2,808 ms, i.e., s 5 29 ms and e 5
2,808 ms.

Also of interest is the fact that the corresponding pair of
electrodes, C32T5, over the left hemisphere, did almost as
well, namely, 52 of 60. Two other sets of pairs displayed
considerable hemispheric symmetry in prediction. The results
are summarized in Table 2. Of the 120 possible pairs, only one
other pair, beyond those listed in Table 2, predicted correctly
40 or more of 60; this pair was an anomalous pair that straddled
both hemispheres: C42T5 had 43 correct predictions.

Bipolar Revision of S5 Data of Ref. 1. The worst case of
brain-wave recognition for spoken words as stimuli in our
earlier article (1) was for subject S5 in the OyE condition, with
13 of 35 (37.1%) correct. Using a 3- to 13-Hz filter, the
temporal window 103 to 809 ms, and the bipolar pair Cz2T4,
the recognition rate improved to 19 of 35 (54.3%).

Individual Trials for Sentences. The excellent predictive
results for the two best bipolar pairs encouraged us to see how

FIG. 1. Shaded contour map of recognition-rate surface for the
10–20 system of EEG sensors for subject S8. The physical surface of
the scalp is represented as a plane circle as is standard in represen-
tations of the 10–20 system. The recognition rate for each sensor is
shown, next to it, as the number of test samples of sentences correctly
recognized of a total of 60. The predictions are for the best parameters
L 5 3 Hz, W 5 7 Hz, s 5 88 ms, and e 5 2,455 ms.

FIG. 2. Contour map of recognition-rate surface for filter param-
eters L and W for subject S8. The x coordinate is the low frequency (L)
in Hz and the y coordinate is the width (W) in Hz of a filter. The
number plotted as a point on the map is the number of test samples
of sentences correctly recognized of a total of 60 by the Butterworth
filter with the coordinates of the point. The predictions are for the best
temporal parameters s 5 88 ms, e 5 2,455 ms, and best sensor C3.

FIG. 3. Contour map of recognition-rate surface for start (s) and
ending (e) parameters for subject S8. The x coordinate is the start point
(s), measured in ms, of the interval of observations, used for predic-
tion. The y coordinate is the ending point (e), measured in ms, of the
same interval. The recognition-rate numbers have the same meaning
as in Figs. 1 and 2. The predictions are for the best filter parameters
L 5 3 Hz and W 5 7 Hz, and best sensor C3.

Table 2. Bipolar predictions from the two hemispheres

Left hemisphere Right hemisphere

Sensor Sentence Words Sensor Sentence Words

C3–T5 52 24 C4–T6 56 19
C3–T3 46 12 C4–T4 36 15
C3–P3 43 17 C4–P4 42 15
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well these two bipolar pairs would do in classifying test samples
consisting of individual trials. When we used a 2.5- to 9-Hz
filter and a temporal window from 118 to 2,631 ms just for
these two pairs, the recognition results were: for C32T5 134
of 288 correct (46.5%) and for C42T6 122 of 288 correct
(42.4%). These results are encouraging, given that the chance
level is 1y12. But it is also clear that further methods of analysis
will be needed to come close to the 90% success level already
reached in classifying test samples of averaged trials.

Best MEG Recognition Rate for Sentences. When we used
the same parameters as for the best EEG result, namely, a 3-
to 10-Hz filter and a window from 88 to 2,455 ms, the best
MEG sensor had a recognition rate of 32 of 60. With extensive
additional search of the filter-parameter space, we raised the
recognition rate only to 33 of 60 for a 3- to 11-Hz filter. That
none of the MEG sensors came close to the best EEG sensor
is not surprising. This result was similar to what was reported
in ref. 1. In addition, the electrooculogram and electromyo-
graph sensors were close to chance level in their recognition
rates.

For this reason we report only on EEG results in the
remainder of this paper.

Cut-and-Paste Sentences. For the 12 sentences used as
stimuli in the experiment, we grouped three sentences that
have the same first word together, which resulted in four
groups: (BHJ, BLM, BSS), (JHS, JLM, JSB), (MHB, MLS,
MSJ), and (SHB, SLJ, SSM). Within each group, we left the
five test samples for each sentence intact, and cut and pasted
the first word in the sentences between prototypes of the three
sentences, in the following way: 132, e.g., cutting Bill from
BHJ and pasting it to BLM; 233, e.g., cutting Bill from BLM
and pasting it to BSS; 331, e.g., cutting Bill from BSS and
pasting it to BHJ.

The cut-and-paste operations were done before the FFT,
filtering, and inverse-FFT. We used a 3- to 10-Hz filter. The
start point (s) of the cut-and-paste window was fixed at 88 ms
after stimulus onset. The end point (e) of the cut-and-paste
window was run from 221 ms after stimulus onset to 735 ms
after stimulus onset with a step increment of 15 ms.

A least-squares analysis then was carried out for the 60 test
samples in total against the 12 cut-and-pasted prototypes.
There were several local maxima. Some were early, which is
hardly surprising because the best cut would be at the start, i.e.,
at 88 ms. The two later significant local maxima were at 544 ms
with 49 of 60, and at 676 ms with 42 of 60. These results do not
sharply identify the endpoint of the first word. More detailed
investigation will be required to do this.

Cut and Pasting Among Different Words. The cut and paste
of different wave tokens of the same word suggests a compar-
ison with cut and paste of different first words, e.g., replacing
Bill by John. Instead of within groups, now we did it across
groups, in the order of (BHJ, BLM, BSS)3 (JHS, JLM, JSB)
3 (MHB, MLS, MSJ) 3 (SHB, SLJ, SSM) 3 (BHJ, BLM,
BSS). Between each two groups directly linked by an arrow, we
cut and pasted between prototype sentences with the same
verb. For example, (BHJ, BLM, BSS) 3 (JHS, JLM, JSB)
represents cutting Bill from BHJ and pasting it to JHS, cutting
Bill from BLM and pasting it to JLM, and cutting Bill from BSS
and pasting it to JSB.

The best sensor for the filter 3–10 Hz and the observation
window 0–544 ms was again C3, which recognized 32 of the 60
test samples (53.3%). That for this condition we got 32 correct
of 60 classifications, with a chance level of 1y12, is not
surprising, most likely because in many cases the second and
third words of the prototypes, taken together, which were
unchanged, were sufficient as a basis for correct recognition.
In contrast, when we made the cut at 1,176 ms in the middle
of the second word as well, as gauged by the data of Table 1,
the best results for the same remaining parameters were much
worse, 17 correct predictions of 60 (28.3%).

Totally Artificial Prototypes. We cut and pasted the proto-
types in such a way that the prototype of each sentence was
composed of three segments originally from three other
different prototypes and the words corresponding to the new
segments were such that the three words for the three new
segments still composed, even if artificially, the original sen-
tence. We omit the specific details, which follow along the lines
laid out for the two cases of cut and paste just analyzed. The
best result was 11 of 60, for sensor T3, with the cut after the
first spoken word at 882 ms and after the second word at 2,058
ms. The first cut was between the means of e1 and s2 shown in
Table 1; the second cut was just after the mean of s3. The
expectation from pure chance is five, so this result is barely
significant. Clearly we need to have a better understanding
than we now have to create satisfactory totally artificial
prototypes.

Silence Between Words. Silence in the speech does not mean
silence in the brain waves recorded at the same time (compare
the two parts of Fig. 4). The shaded part is the speech spectrum
for the sentence Bill sees Susan and the solid curved line is the
prototype filtered bipolar C42T6 wave of the sentence used in
recognizing test samples. The silence between words is not
comparably evident in the brain waves, which, if typical, shows
that recognizing the beginnings and ends of words is even more
difficult in brain waves than it is in continuous speech. (As
indicated earlier, our speech recordings of the sentences were
not fast enough to qualify as natural continuous speech, but
rather as spoken sentences with each word clearly delineated,
as is common in dictation.)

Auditory-Word Condition for S9. To begin with, we did our
standard FFT and filter analysis. We explored the start (s) of
the signal sequence from 59 to 118 ms after stimulus onset with
an increment of 15 ms, the end (e) from 441 to 1,176 ms with
increment 74 ms, low frequency of the filter from 2 to 4 Hz with
increment 1 Hz, and frequency width from 4 to 8 Hz with
increment 1 Hz. Classification was done with all possible
combinations of values of these variables. The best perfor-
mance was 23 correct of 35 (65.7%), with a temporal window
from 88 to 662 ms after stimulus onset, and with a filter from
2 to 8 Hz. This best performance was achieved by sensor F8.

Bipolar Version for S9. The best analysis was for a filter from
2 to 10 Hz and a window from 118 to 882 ms. The best pair was
C32T5 at 24 of 35 (68.6%) correct predictions, and the
corresponding pair on the right hemisphere was C42T6 as
second best of all pairs, with 19 of 35 (54.3%) correct predic-
tions. Further data on corresponding bipolar pairs are given in
Table 2 and exhibit performance for matching locations in the

FIG. 4. Speech spectrum and corresponding brain wave of sentence
Bill sees Susan. The x axis is measured in ms after onset of spoken-
sentence stimulus. The speech and brain waves have different ampli-
tudes, so no common scale is shown on the y axis.
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two hemispheres comparable to the bipolar sentence recog-
nition data.

Using Words of S9 to Recognize Words of S8. It is natural
to ask whether or not the brain wave for the first word in a
sentence resembles the brain wave for the word when said
alone by a different person. We took the prototypes for both
the S8 auditory-sentence condition and the S9 auditory-word
condition (all prototypes were generated with half of all the
trials according to the way prototypes were generated in the
standard EyO case). We used the prototypes for the words Bill,
John, Mary, and Susan as prototypes in our new classification.
For each of these four words, we took the three prototypes for
the three sentences that start with the same word in the S8
auditory-sentence case as test samples for the classification
using word prototypes from S9. We then did the classification
with four prototypes and 12 test samples in total on various
windows. The best result obtained was six correct predictions
of the 12 possible for sensor T5 with filter of 2–10 Hz and a
time window from 59 to 720 ms after stimulus onset. Of these
six correct predictions, three were for John, i.e., all the test
samples of this word, and no other test samples were classified
as John. In Fig. 5 we show the prototype and best of the three
test samples, in terms of least squares, on the same graph.
Considering that we are comparing the brain waves of different
subjects, the similarity is remarkable.

Bipolar Version. The best analysis was correct recognition of
10 of the 12 prototype samples of S8 using prototypes of S9.
The parameters and bipolar pair were unusual: filter 9–12 Hz,
window 15–368 ms for P42Fp1. However, many bipolar pairs
with many different parameters recognized nine of the 12. We
are encouraged to look deeper for brain-wave features invari-
ant between subjects who are processing the same spoken
word.

Analyses of Methodological Interest. We investigated sev-
eral different mathematical and conceptual approaches to
recognition. Because none of them improved on the recogni-
tion results reported above, we describe these alternative
approaches only briefly.

Three normalization schemes. To see whether some rather
natural linear transformations would normalize the data across
trials in a way that would improve our predictions, we tried the
following three schemes on the sentence data of S8, which are
described and analyzed above. The transformations were
applied to the prototypes and test samples on the hypothesis
this might make the prototypes and corresponding test samples
more comparable.

The first transformation M simply subtracted the mean
amplitude from the observed amplitude for each observation
i, where n is the number of observations in each trial:

~M! x9i 5 xi 2 S1
n O

k51

n

xkD ,

the second (A) rescaled the amplitude by dividing it by the
average absolute value of the amplitude:

~A! x9i 5 xiyS1
n O

k51

n

uxkuD ,

and the third (E) rescaled the amplitude by dividing it by the
square root of the average energy:

~E! x9i 5 xiyÎS1
n O

k51

n

xk
2D .

We ran several different linear transformations made up of
combinations of M, A, and E. Two of the best were A alone with
correct recognition of 48 of the 60 test samples, and E(Mxi)
with 49 of 60 correct.

Exploratory use of wavelets. We used the discrete wavelet
transform (DWT) with symmlet ‘‘s8,’’ introduced by Dau-
bechies (7) (for computational details, see ref. 8). The sub-
bands after DWT were (d1, d2, . . . , d8, d9, s9) on the
observation sequence from 0 to 2,048 samples (3,011 ms) after
stimulus onset for the prototypes and test samples of all the 12
sentences for sensor C3. For each of the observation se-
quences, the subbands d1, d2, d3, d4, d5, d9, and s9 were set
to zero and inverse-DWT then was taken. By retaining non-
zero coefficients corresponding to about 10.6 Hz (d6), 5.3 Hz
(d7), and 2.7 Hz (d8), the result is analogous to filtering via a
3- to 10-Hz filter with FFT and inverse-FFT. We then did a
least-squares analysis with the wavelet-filtered waveforms for
the temporal window from 88 to 2,455 ms after stimulus onset,
and obtained 44 of 60 cases correctly recognized. Finally, we
explored classification on a variety of temporal windows. The
best result was 48 of 60 with five different sets of parameters
close together on the grid of beginning and ending points; a

FIG. 5. Brain waves of S8 (dotted curved line) and S9 (solid curved
line) for spoken word John. In the case of S8, the spoken word occurred
as the first word of a sentence. The x axis is measured in ms after onset
of the auditory stimulus.

Table 3. Summary of recognition rates

Type of recognition Result %

Sentences, S8
EEG 52 of 60 87
Bipolar EEG 56 of 60 93
Individual trials EEG 134 of 288 47
MEG 33 of 60 55
Cut and paste 49 of 60 82
Artificial prototypes 11 of 60 18

Words, S9 23 of 35 66
Bipolar 24 of 35 69

Words (S9) for words (S8) 6 of 12 50
Bipolar 10 of 12 83

Further methods for sentences
A transform 48 of 60 80
EM transform 49 of 60 82
Wavelets, S8 48 of 60 80
Nearest neighbor 19 of 36 53
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typical interval was from 191 to 2,808 ms. So, the wavelet
performance was pretty good, in terms of this first exploratory
analysis, but not as good as the FFT approach described above.

We also did a recognition analysis using only, in sequence,
the individual subbands d6, d7, and d8. Not surprisingly, the
results were comparatively poor, the best for d6 was 32 of 60,
for d7, 23 of 60, and for d8, 18 of 60.

Multiple prototypes. In the current literature of machine
learning and adaptive statistics a commonly used method of
classification is that of choosing the known classification of the
nearest neighbor. In our context we tried a variant of this
method by creating for each sentence in the data of S8 five
rather than one prototype, so now the prototypes had the merit
of being averaged over the same number of trials as the test
samples, namely, five trials. To the multiple prototypes we
applied the same FFT, filter, inverse-FFT, and least-squares
analysis, as in the case of only one prototype. We classified the
test sample as the same as that of the prototype, of the many
used, which had the best fit. Because of the extra computing
required by the many additional Fourier transforms and least
squares, we analyzed in blocks of 12 only 36 of the test samples.
The best result, which was for sensor C3, window 88 to 2,455
ms and a 3- to 10-Hz filter, was 19 of 36, not nearly as good as
the single-prototype result of 52 of 60.

CONCLUSION

This study and our earlier one (1) show that brain-wave
recognition of words and simple sentences being processed
auditorily is feasible. In the bipolar analysis we also found
surprising symmetry between the two hemispheres for the
performing pairs. Moreover, individual words in sentences
were identified and successfully cut and pasted to form partly
artificial brain-wave representations of sentences. We summa-
rize in Table 3 the main recognition results. (Here and earlier

we have not given standard statistical levels of significance,
because the natural null hypothesis of the sensors’ being
independent and identically distributed random variables is
obviously rejected by the regularity of the isocontours of
recognition rate, as well as by the large deviations of the best
results from chance levels.) We emphasize these recognition
results are all for prototypes and test samples averaged over
from five to 40 trials, with the one exception of 47% for
individual trials. Achieving rates for individual trials close to
the best for averaged trials is an important goal for future
research of this kind.
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