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ABSTRACT To investigate the nature of plasticity in the
adult visual system, perceptual learning was measured in a
peripheral orientation discrimination task with systemati-
cally varying amounts of external (environmental) noise. The
signal contrasts required to achieve threshold were reduced by
a factor or two or more after training at all levels of external
noise. The strong quantitative regularities revealed by this
novel paradigm ruled out changes in multiplicative internal
noise, changes in transducer nonlinearites, and simple atten-
tional tradeoffs. Instead, the regularities specify the mecha-
nisms of perceptual learning at the behavioral level as a
combination of external noise exclusion and stimulus en-
hancement via additive internal noise reduction. The findings
also constrain the neural architecture of perceptual learning.
Plasticity in the weights between basic visual channels and
decision is sufficient to account for perceptual learning with-
out requiring the retuning of visual mechanisms.

Perceptual learning specific to retinal position (1, 2), orienta-
tion (3-8), or scale (9-13) has been claimed to reflect plasticity
in the adult early visual system (1, 2, 11, 12). But what is the
nature of this plasticity? The answer to this question stands at
the interface between visual neuroscience and human perfor-
mance. Given the existence of multiple orientation and spatial
frequency channels in the visual system (14), one important
question is whether perceptual learning “fine tunes” individual
channels or reflects plasticity in the weighting of channel
activity. To approach this question, visual perceptual learning
in the presence of systematically varying amounts of environ-
mental (random external) noise was measured in adult hu-
mans. Perceptual learning combined with the external noise
manipulation (15-18) allows the identification of the under-
lying mechanisms of learning at the overall system level as
external noise exclusion, additive internal noise reduction
(effecting stimulus enhancement), and/or multiplicative inter-
nal noise reduction. Perceptual learning in a peripheral ori-
entation discrimination task was a result of improvements in
both external noise exclusion and stimulus enhancement. In
terms of basic visual mechanisms, coupled changes in external
noise exclusion and stimulus enhancement may reflect plas-
ticity in the weighting or selection of task-relevant spatial
frequency channels.

MATERIALS AND METHODS

Observers discriminated the orientation of peripheral Gabor
patches embedded in visual noise while performing a central
task (Fig. 1a). A fixation point in the center of the display was
followed by the rapid display of a central task stimulus at
fixation and a perceptual task stimulus peripherally in the
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lower right quadrant (Fig. 1a). In the central task, designed to
demand fixation of the eye, the observer decided whether a
string of small characters (1/33 ms) contained either an S or
a 5. Perceptual learning of orientation discrimination was
measured in the lower right quadrant of the visual display. The
signal was a Gabor stimulus (windowed sine wave with 2.3
cycle/degree center frequency) tilted either 12 degrees top to
the right or left. Accuracy feedback for both tasks was pre-
sented on every trial. The background luminance was set to 71
cd/m?; maximum achievable luminance for the display was 144
cd/m?. On each trial, random external pixel noise was chosen
from a Gaussian distribution, with one of eight levels of
external noise contrast defined by standard deviations ranging
from 0 (noiseless) to 33% of the maximum achievable contrast.
Examples of the eight levels of external noise, combined with
the signal Gabor are illustrated in Fig. 1d. Contrasts required
to achieve two different thresholds (18) were estimated with
staircase methods (19) (Fig. 1 b and ¢). A staircase manipulates
signal contrast to track a specific target proportion correct: A
3/1 staircase requires three successive correct responses to
reduce contrast and one error to increase contrast, and tracks
79.3%, corresponding to 1.634 d’; a 2/1 staircase tracks 70.7%,
corresponding to a 1.089 d’. Each session included 100 trials
per 3/1 staircase and 80 trials per 2/1 staircase (~20 reversals
per staircase). Ten sessions of 1,440 trials each were performed
on different days by each of four observers, for a total of 14,400
trials per observer, or 57,600 trials in the experiment.

RESULTS

Contrast thresholds (visual signal contrast of the Gabor re-
quired to achieve a specified accuracy) at the two different
criterion performance levels are shown in Fig. 1 e and f. Fig.
le reports the thresholds for the 79.3% accuracy criterion
whereas Fig. 1f reports the thresholds for the 70.3% accuracy
criterion averaged over 2-day sets and observers. Reaching the
higher criterion requires higher signal contrasts. Thus, corre-
sponding curves in Fig. le are above those in Fig. 1f. Within
each curve of each panel, higher levels of signal contrast are
necessary to compensate for the damaging effect of higher
levels of external noise. The dependence of threshold on the
contrast of external noise has a standard shape (20, 21). At high
levels of external noise (the high noise limb of the function),
signal contrast increases directly with the external noise level.
At low levels of external noise (the low noise limb of the
function), signal contrast is nearly independent of external
noise.

Conventionally, the high noise limb reflects performance
limited by external noise, whereas the low noise limb is
associated with limitations due to inefficiencies in the observ-
er’s visual system, expressed as equivalent internal noise (20,
21). Orientation discrimination performance at both criterion
accuracies improved substantially with practice at all levels of
external noise, as seen in the lowered thresholds over days (Fig.
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FiG. 1.

Procedure and results of the perceptual learning experiment. (a) Layout of the displays. Threshold estimation by a 3/1 (b) and 2/1

staircase (c) (19). (d) Contrast thresholds for orientation discrimination were estimated at each of eight levels of environmental (external) noise.
Contrasts at threshold are shown averaged over observers and pairs of days. Contrast thresholds for the more stringent criterion (¢) and the less
stringent criterion (f). Smooth curves are fits of the Perceptual Template Model (PTM) (Fig. 2). Perceptual learning at the two criterion levels
identifies the improvements as a hybrid of external noise exclusion and signal enhancement.

1 e and f). The (geometric) mean threshold ratio of initial
performance (days 1-2) and final performance (days 9-10)
was ~2.8. As is standard in perceptual learning (1-7), the
fastest changes are observed early in training. This is a
characteristic of many learning models (22). These data ex-
hibited two extraordinarily strong quantitative regularities.
First, at a particular criterion accuracy, the ratio of any two
practice curves was approximately constant over external
noise, corresponding to the observation that the shape of the
threshold versus external noise functions was similar over
levels of practice in the log contrast threshold scale: each
practice curve is a vertically shifted copy of approximately the
same shape. The second observed regularity is in the ratio of
the contrast thresholds at the higher (Fig. 1e) to the lower (Fig.
1f) threshold criterion at any practice level, which was approx-
imately constant over widely varying levels of external noise:
the two sets of curves are shifted vertically relative to one
another on the log contrast threshold scale. These relations did
not differ significantly with noise level or over days (P > 0.10),
a finding that will allow us to eliminate certain mechanisms of

perceptual learning (18). The observation that perceptual
learning over days improves performance in both high noise,
where external noise is the limiting factor and low noise, where
internal processing inefficiencies are the limiting factor, im-
plies a mixture of mechanisms or loci of improvement. Im-
provements in the high noise limb are naturally associated with
external noise exclusion and those in the low noise limb with
stimulus enhancement through internal noise reduction. How-
ever, a model is necessary to fully test and quantify this
interpretation and to rule out alternative interpretations.
Luckily, the observation that the performance functions for
the two criterion levels maintain a ratio relationship to one
another independent of day of practice and external noise level
provides strong constraints on an explicit model. We evaluate
the perceptual learning data by using a model (Fig. 2) that
describes the observer as an input—output system. The ob-
server model (15-18 and see Fig. 2a) characterizes the per-
ceptual system as (i) a perceptual template or filter tuned to the
signal-valued stimulus (23); (if) an optional nonlinear trans-
ducer function; (iii) independent multiplicative noise; (iv)
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FiG. 2. Signature patterns of change in performance during perceptual learning associated with signal enhancement, external noise exclusion,
and internal multiplicative noise reduction. (a) The Perceptual Template Model (15-18). (b) Practice enhances the stimulus as processed by the
perceptual template, leading to improvement in performance only in the region where performance is limited by internal noise (4, reduction). (c)
Practice improves external noise exclusion by changing the perceptual template, resulting in improved thresholds at high levels of external noise
(At reduction). (e) Practice reduces internal multiplicative noise, yielding improvements in performance over the range of external noise (Am

reduction).

independent additive noise; and (v) a statistical decision rule.
The perceptual template or filter describes the observer’s
overall filtering characteristics in a particular task and reflects
a weighted combination of inputs from basic visual mecha-
nisms. Multiplicative and additive internal noise characterize
processing inefficiencies in visual system (24). Limitations in
performance reflecting internal inefficiencies can be quanti-
fied in terms of the amount of internal noise needed to produce
an equivalent performance limitation. Additive internal noise
reflects the existence of an absolute threshold in the absence
of external noise. The nonlinear transducer function reflects
nonlinearities early in visual system (25). Multiplicative inter-
nal noise describes the consequences of contrast gain control
systems (26). The observer model predicts the form of thresh-
old versus contrast of external noise functions based on a
fundamental analysis of signal to noise properties:

(Be)”
(BZVCZV + N2y

ext.

dr_

Ng,zt + N?

)+ NG

Thed'is a measure of the threshold accuracy specified by the
experlmenter Next is the contrast power of the external n01se
B is the gain on a signal stimulus; c is the signal contrast; N~
and N2, are additive and multlpllcatlve equivalent internal
noise that quantify processing inefficiencies; and -y describes
visual system nonlinearity. Solving for the contrast thresholds
¢ (in the log form) yields the model curves (Fig. 2b-d). (See
Appendix A for a brief derivation).

Three distinct mechanisms or loci of perceptual learning can
be distinguished (see Fig. 2a). One mechanism narrows the
overall filter of the observer; the other two mechanisms reduce
multiplicative or additive internal noise. These three potential
mechanisms or loci of perceptual learning are quantified by

attentuating multipliers 4 (0 < A < 1): A¢ for external noise
exclusion through filter narrowing and A,, and A, for multi-
plicative and additive noise reduction. All of the A4s reflect
reductions relative to a baseline (4 1). The equation
incorporating these multipliers is:

v (Be)?
VAENZ )Y + ALNT (B + APNZ) + AN

These three mechanisms yield signature patterns of improve-
ment when external noise is manipulated (15-18): stimulus
enhancement through additive noise reduction, corresponding
to reduction in A, (Fig. 2b), external noise exclusion, corre-
sponding to a reduction in A (Fig. 2c), and internal multipli-
cative noise reduction, corresponding to a reduction in Ay,
(Fig. 2d). The smooth curves in Fig. le-f are the best fitting
model for the data. Parameters were estimated by using
MATLAB (Math Works, Natwick, MA) routines to minimize the
least squared error in the log threshold contrasts. The log
approximately equates the standard error over large ranges in
contrast thresholds, corresponding to weighted least squares,
an equivalent to the maximum likelihood solution for contin-
uous data.

These data rule out multiplicative noise reduction and
changes in nonlinearity. In the observer model, the ratio of
performance for the two threshold levels is purely a function
of multiplicative noise and nonlinearity vy (18). The observa-
tion that the ratio of the two threshold levels is essentially
constant over both external noise level and day of practice
rules out changes in both nonlinearity and multiplicative noise.
Changes in multiplicative noise over days would have revealed
larger changes in threshold for the higher than the lower
criterion staircases (27). The value of the ratio for the two
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threshold levels (in particular, that this ratio departs from the
ratio of d’s corresponding to the 79.3% and 70.7% accuracies
criteria) (18) requires a nonlinearity y of ~1.4 that is constant
over training days.

At the overall system level, perceptual learning reflects a
combination of improved stimulus enhancement and external
noise exclusion, with values of 4, and Ay after training of 0.38
and 0.31. These As reflect reductions relative to baseline,
measured here in the first two days of practice. Corresponding
results obtained for each observer individually. Filtering of
external noise (4¢) improves performance in the high external
noise region (Fig. 2c); stimulus enhancement via additive
internal noise reduction (4,) improves performance in the low
external noise regions (Fig. 2b).

DISCUSSION

The strong regularities revealed by the data from perceptual
learning in external noise, and the strong distinctions, which

gam
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follow from those regularities, are quite novel. Previous studies
(1-13) of visual tasks for adult observers evaluated perceptual
learning in the absence of environmental noise, corresponding
to the single zero external noise points in our data (1-12).
Evaluation of performance over levels of external noise both
extends the conditions of perceptual learning and provides key
tests of three distinct mechanisms of perceptual learning that
any model must address. The external noise approach is quite
different from other work, which investigates related questions
by an analysis of stimulus and task transfer (1-3, 10, 28, 29).
Transfer data support qualitative inferences about generality
or specificity of learning. The external noise paradigm and
model provide quantitative tests, which support direct identi-
fication of the mechanisms of learning. The finding that
perceptual learning reflected coupled improvements in thresh-
old contrast at both high and low levels of external noise (Fig.
le-f) contrasts sharply with previous observations of the
effects of attentionally cuing a spatial location in practiced task
performance. Tradeoffs in attention between competing tasks

l

Decision

F1G6.3. Schematic of early visual system channels and the changes with perceptual learning. A Gabor patch in noise is processed by visual channels
tuned to different spatial frequencies and orientations (14). Channels tuned to a range of spatial frequencies and their corresponding bandpass
stimuli are illustrated. Each channel has additive and multiplicative noise as well as nonlinearities. Early in training, several channels are active
and connected to a decision structure. After training, the most closely tuned channel has the most active inputs to a decision module, whereas that

of other channels has been reduced.
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at two locations in space have resulted in performance differ-
ences restricted to low levels of external noise, corresponding
to reduction in additive internal noise alone (15). A different
set of attentional manipulations exclusively impact on perfor-
mance at high levels of external noise and reflect external noise
exclusion alone (30). These previously documented attentional
effects have revealed single mechanisms (Fig. 2 b and c¢). The
observation of coupled effects at low and high external noise
in perceptual learning is neither trivial nor obligatory. Atten-
tional effects on performance also have been of quite modest
size in relation to the impact of perceptual learning reported
here (15-18, 27, 30). Observed attentional effects in practiced
observers yielded improvements of ~15-25%, compared to
the >250% effects of perceptual learning reported here.

What is the significance of the coupled improvements in
external noise exclusion and internal additive noise reduction
(stimulus enhancement) in perceptual learning? These cou-
pled improvements at the observer level have a natural inter-
pretation at the level of basic visual channel(s) (14). The
spatial frequency bandwidth (at one-half height) of the per-
ceptual filter can be calculated from the model, assuming that
the perceptual filter for our task has a Gaussian shape centered
on the center frequency of the Gabor stimulus. The spatial
frequency bandwidth of the perceptual filters at the beginning
of training was approximately two octaves (0.9-3.7 cpd) and at
the end of training, was approximately one octave (1.6-3.0
cpd), which corresponds closely with previously reported
single channel bandwidths (14). The bandwidth early in prac-
tice spans several channels and late in practice narrows to a
single, task-relevant, channel.

We suggest that perceptual learning primarily serves to
select or strengthen the appropriate channel and prune or
reduce inputs from irrelevant channels. The connections be-
tween the most closely tuned visual channel and a learned
categorization structure are maintained or strengthened, while
input from other channels is reduced or eliminated (Fig. 3). A
similar interpretation has been used to account for the im-
provements in single stimulus relative to mixed stimulus blocks
in uncertainty experiments (14). Reducing the weights on
irrelevant channels reduces the contributions of external noise
and additive internal noise8. Perceptual learning, then, reflects
plasticity in the relative activity of different basic visual
channels, which contribute to categorization. At some level of
neural representation, this might appear as a reorganization in
the weighting of the critical channel in cortical maps (31-34).
Retuning of individual channels cannot be generally ruled out
as a possible mechanism of learning, but learning in this task
required only the reweighting of channel activities.

This reweighting of connections between basic visual chan-
nel outputs and a learned categorization structure is compat-
ible with a wide range of standard proposed learning mech-
anisms (35-37). Although we did not investigate the impor-
tance of feedback, trial by trial feedback was in fact available
in this task. Hence, any of a large class of neural network
models would be consistent with these data (36, 37). The model
illustrated in Fig. 3 has a very simple structure; more complex
tasks might require a more complex (hidden unit) structure to
support learning. The fact that learning approached asymp-
totic performance after ~7,000 trials may pose a constraint on
the learning model (22).

Optimal channel selection is inherently specific to retinal
location, spatial frequency, and orientation (1-8). The obser-
vations of specificity of learning to retinal location or stimulus,
which have been used in the past to argue for adult plasticity
in visual system (1-3, 10), are consistent with reweighting of

$Multiplicative noise in channels not sensitive to the signal depends
directly and solely on, and hence is indistinguishable from, external
noise. This does not imply modification in multiplicative noise, which
must be revealed in response to signal as well as external noise.

Proc. Natl. Acad. Sci. USA 95 (1998)

inputs from retinally specific channels. Further, perceptual
learning based on channel selection and learned categorization
weights may leave performance on other tasks unaffected,
whereas alteration of the tuning of the channels themselves
would necessarily affect all tasks relying on those channels. The
learning of channel selection would allow simultaneous in-
compatible perceptual learning (38) whereas channel retuning
might not. Another example of perceptual learning that ap-
pears to be inconsistent with retuning basic visual mechanisms
is the ability of observers to learn and then switch rapidly
between different prism adaptation states; this flexibility also
requires the coexistence of incompatible learned categoriza-
tion structures (39).

The authors are grateful to G. Sperling for suggesting external noise
as an important tool in psychology and to J. Hochberg, N. Graham, and
N. Weinberger for helpful comments. This work was supported by the
U.S. Air Force Office of Scientific Research, Life Sciences, Visual
Information Processing Program.

Appendix A

The perceptual template model (15-18) (Fig. 2a) predicts
observer performance based on fundamental signal to noise
relations. For a signal of physical contrast amplitude ¢, the
signal strength S = Bc, where B is the gain through the
perceptual filter for a signal valued stimulus. Performance also
depends on the limiting noise. Overall noise variance NZ s
the sum of three 1ndependent norses external n01se multrph-
cative noise, and additive noise: Ntmdl N2, + N?, + N2 The
magnitude of multiplicative noise is a direct function of the
total contrast power of the signal and external noise: N2, =
NZ(B%?* + N-). With transduction nonlinearity (||.||?), the
signal term becomes S = (Bc)?, and the squared noise term
becomes Niy = Not, + Na(B2c?¥ + N22Y) + Na. Performance
is described by accuracy statistic d':

(Be)”
N2+ N2 (B + N2,

ext ext

d’ = S/Nt()tal

)+ NT
Rearranging and solving for contrast at a given threshold

criterion d, ¢,

(1 + N2N2Y + Ny |2y

ext

B(1/d'* = Ny)

c, =
Taking the log,

loge, = Tlog((l + NZ)NZ, + N2)

1
— ~—log(1/d"? —

2 NZ) — log(B).

The log form corresponds to the model curves shown in Fig.
2.
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