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The difficulty of visual search may depend on assignment of the same visua elements as targets and
distractors—search asymmetry. Easy C-in-O searches and difficult O-in-C searches are often associated
with parallel and serial search, respectively. Here, the time course of visual search was measured for both
tasks with speed—accuracy methods. The time courses of the 2 tasks were similar and independent of
display size. New probabilistic parallel and serial search models and sophisticated-guessing variants
made predictions about time course and accuracy of visua search. The probabilistic parallel model
provided an excellent account of the data, but the serial model did not. Asymptotic search accuracies and
display size effects were consistent with a signal-detection analysis, with lower variance encoding of Cs
than Os. In the absence of eye movements, asymmetric visual search, long considered an example of
seria deployment of covert attention, is qualitatively and quantitatively consistent with parallel search

processes.

In visual search tasks, observers are instructed to find a target
item among a set of distractorsin adisplay. The relative difficulty
of search among different distractor environments has informed
the development of models of visual processing (Neisser, 1967;
Sperling, Budiansky, Spivak, & Johnson, 1971; Treisman &
Gelade, 1980). Asymmetriesin search have been especially central
in relating search to feature analysis in early vision (Treisman &
Gormican, 1988). A search asymmetry occurs when search diffi-
culty, as measured by response time (RT) and/or accuracy, de-
pends strongly on the assignment of the same two items as either
target or distractor. For example, it is easier to find a tilted line
target among vertical line distractors than to find a vertical line
target among tilted line distractors, and it iseasier to find aCin Os
than to find an O in Cs (Treisman & Gormican, 1988; Wolfe &
Friedman-Hill, 1992). These asymmetries are often argued to
reveal the valence of coded features along important dimensions of
visual analysis. The vertical-tilted asymmetry has been interpreted
as evidence that feature analyzers in early stages of visual pro-
cessing detect deviations from the vertical (Wolfe, Friedman-Hill,
Stewart, & O’ Connell, 1992), and the C-O asymmetry has been
interpreted as evidence for detectors that respond to a break in a
closed figure (Treisman & Gormican, 1988).

Barbara Anne Dosher and Songmei Han, Memory, Attention, Percep-
tion Laboratory, Department of Cognitive Sciences and Institute for Math-
ematical Behavioral Sciences, University of California, Irvine; Zhong-Lin
Lu, Laboratory of Brain Processes, Department of Psychology, University
of Southern Cdlifornia.

This research was supported by grants from the Air Force Office of
Scientific Research, Life Sciences Program to Barbara Anne Dosher and
Zhong-Lin Lu and by a summer fellowship of the Institute for Mathemat-
ical Behavioral Sciences to Songmei Han.

Correspondence concerning this article should be addressed to Barbara
Anne Dosher, Department of Cognitive Sciences, 3151 SSPA, University
of California, Irvine, CA 92697-5100, or Zhong-Lin Lu, Department of
Psychology, SGM 501, University of Southern California, Los Angeles,
CA 90089-1061. E-mail: bdosher@uci.edu or zhonglin@rcf.usc.edu

In search asymmetries, the “easy” search (e.g., C in Os) leads to
search times (and errors) that increase modestly or not at all with
display size; in contrast, the “hard” search (i.e., O in Cs) leads to
search times (and errors) that increase substantially with display
size. Search asymmetry situations are important for distinguishing
models of attention and visual search because, in them, tasks differ
only in the assignment of target and distractor. In contrast, other
manipulations of search difficulty, such as distractor heterogeneity
or conjunction search (Eckstein, 1998), are associated with
changes in the ensemble of stimuli or the relationship between
stimuli.

Search asymmetries have been of great theoretical interest (e.g.,
Nagy & Cone, 1996; Rosenholtz, 2001; Rubenstein & Sagi, 1990;
Treisman & Gormican, 1988; Williams & Julesz, 1992; Wolfe,
2001). Search asymmetries have variously been attributed to pre-
attentive feature processing and feature prototypicality (Treisman
& Gormican, 1988), transmission time in feature detection chan-
nels (Nagy & Cone, 1996), epiphenomenal experimental design
asymmetries (Rosenholtz, 2001), and the variance properties of
early visua analysis (Rubenstein & Sagi, 1990). Below, we revisit
these theoretical positions in light of the current analysis of the
time course and accuracy of visua search.

Models of Visua Search

Visual search times and/or accuracies that are independent, or
nearly independent, of the number of elements in the display are
generaly attributed to parallel search, a mode of search that
operates simultaneously without limitation across the entire visual
field. In contrast, when search times increase and/or search accu-
recies decrease with increasing display size, this effect is fre-
quently attributed to the serial deployment of attention to items.
Serial processing models have been developed to account for
display-size effects in visual search. In feature integration theory
(FIT; Treisman & Gelade, 1980), serial search processes operate
randomly over items or groups of items in the entire display. In
selective search models (Dosher, 1998; Egeth, Virzi, & Garbart,
1984), serial processes operate randomly over a specific subset of
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items in the display. In guided search models (GSMs,; Cave &
Wolfe, 1990; Wolfe, 1994), serial search processes operate over a
subset of items determined by a noisy preattentive parallel evalu-
ation process that reflects both bottom-up salience and top-down
task relevance. All of these models assume a two-stage architec-
ture in which attention is associated with a serial processing stage,
although in fact the data are ambiguous (serial and parallel pro-
cesses may mimic one another in accounting for mean RT;
Townsend & Ashby, 1983).

Serial search models are often supported and tested using RT
paradigms (e.g., Cave & Wolfe, 1990; Treisman, 1988) in which
visual displays are available until response. The eye-movement
strategy of the observer is uncontrolled in these paradigms. When
eye-movement strategies are not controlled, RT results include
unknown contributions of eye movements, yet models generally
interpret observed RTs solely in relation to covert visual attention
processes rather than movements of the eye. The potentia role of
eye movements (overt shifts of attention) in visual search is not
explicitly considered in the FIT, SSM, or GSM seria attention
models (see also Pashler, 1987).

An alternative theoretical approach to visual search explainsthe
impact of display size on search performance in terms of sensory
and/or decision limits on discrimination (Duncan & Humphreys,
1989; Eckstein, 1998; Palmer, Ames, & Lindsey, 1993). Display-
size effects in search performance may be a simple statistical
consequence of integrating more sources of information or statis-
tical decision effects in these models (Eckstein, 1998; Palmer,
1994; Palmer, Verghese, & Pavel, 2000; Shaw, 1982; Sperling &
Dosher, 1986). In signal-detection models, statistical decision ef-
fects on accuracy occur due to an increased potential for errorsin
larger display sizes. Signal-detection models are generally tested in
response-accuracy paradigms with brief displays that preclude eye
movements.

In short, analysis of the accuracy of visua search in brief
displays has, with few exceptions, been fully consistent with
unlimited-capacity signal-detection models (e.g., Pamer, 1994).
However, accuracy studies have generally not measured the tem-
poral properties of visual search but have focused instead on
accuracy limitations, whereas RT evidence in long-duration visual
displays has been associated with serial processing, which focuses
on temporal limitations. But even unlimited-capacity signal-
detection results in search accuracy may be consistent with awide
range of temporal search processes: (a) unlimited-parallel models
(Sperling & Dosher, 1986; Palmer et al., 2000), (b) parallel pro-
cessing models in which limited capacity is shared among itemsin
the display (Murdock, 1971; Rumelhart, 1970; Shaw & Shaw,
1977; Townsend & Ashby, 1983), or (c) serial processing models
(Treisman & Gelade, 1980). A simultaneous analysis of the time
course and accuracy of visual search is essential to a full under-
standing of the processes underlying visual search.

Characterizing Covert Attention in Visua Search

Our goal is to characterize and model both the time course and
the accuracy of the processes of covert attention during visual
search—that is, to evaluate the mechanisms of attention in the
absence of eye movements. Covert attention refers to shifts in
attention or distribution of attention in the absence of eye move-
ments. In contrast, overt attention processes involve shifts in eye
fixation. Covert attention was isolated in this study by the use of

time-limited displays that eliminated the possibility of eye move-
ments. The restriction to brief displays without eye movements is
consistent with recent research focused on visual search accuracy
adone (e.g., Pamer, 1994; Pamer et a., 2000). In the brief,
50-100-ms displays used in the present experiments, visual infor-
mation may have been available for as long as 250-500 ms after
display offset (Sperling, 1960), yielding a period of 300—600 ms
in which visua information was available for processing. Serial
processes of covert attention are often estimated at 15-45 ms per
item comparison (e.g., simple FIT)." In relation to such estimates,
the period of availability of visual information in brief visua
displays allows for severa covert shifts of attention. Conversely,
the RTsin unlimited-time, free viewing displays allow ample time
for severa shiftsin eye fixation.

Overview

In this article, the time course of covert visua attention in a
classic example of search asymmetry is shown to be fully com-
patible with a probabilistic parallel search model. Serial and par-
alel search models are distinguished by an analysis of the full time
course of visual search using speed—accuracy trade-off (SAT)
methods. New probabilistic parallel and serial search models are
developed that integrate comparison errors (misses of targets and
false alarms to distractors) into the predicted time course of visual
search. The models differ from one another only in their simulta-
neous (parallel) or sequential (serial) natures of item evaluation.
The probabilistic models were developed in order to provide the
best possible chance for the serial model to account for search
performance and to provide a detailed test of a parallel model.
Previously developed simple serial models overpredict the magni-
tude of the differences in time course associated with differences
in display size. The new probabilistic models distinguish architec-
tures of visual analysis and provide new insights into the nature of
search asymmetry.

Experiment 1 documented atypical pattern of asymmetric visual
search in the standard RT paradigm—uwith displays available until
response, uncontrolled eye movement, and unpracticed observ-
ers—in specially controlled annular displays that equated eccen-
tricity and used homogeneous distractors. Experiment 2 used the
speed—accuracy paradigm to evaluate the processes of visual
search in brief displays that controlled eye movements. The SAT
data allowed tests of the elaborated serial and elaborated parallel
models and of “Bayesian” or sophisticated-guessing variants. Ex-
periment 3 measured the pattern of RTs for the observers of
Experiment 2 in order to document that even after the thousands of
trials of the SAT experiment, the pattern of standard RTs was
similar to that found with unpracticed observers.

1 Some estimates of the time to shift attention are much longer. The
latency (plus initial transition) of voluntary attention shifts have been
estimated by some researchers to require 0.3-0.5 s (Sperling & Weichsel-
gartner, 1995). If these longer estimates are correct, then our brief displays
would reflect information uptake during a single state (distribution) of
voluntary covert attention. However, these estimates are based on very
different paradigms and would also, by assumption, rule out FIT, SSM, and
GSM in their current forms.
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Discriminating Parallel and Serial Processes in
Visual Search

SAT Analysis of Time Course

Characterizing the processes of attention requires the evaluation
of both tempora properties and accuracy of performance, going
beyond the characterization focused on RT (i.e, Treisman &
Gelade, 1980) alone or search accuracy (percentage correct, or d')
aone as a dependent measure (i.e., Palmer, 1995; Shaw, 1982). In
thisarticle, an SAT analysisis used to evaluate both the speed and
the accuracy of visual search (see aso Dosher, Han, & Lu, 1998;
McElree & Carrasco, 1999; Sutter & Graham, 1995; Sutter &
Hwang, 1999). SAT methods provide a joint assessment of pro-
cessing time and accuracy (Dosher, 1976, 1979, 1981, 1982, 1984;
McElree & Dosher, 1989, 1993) over the full time course of visual
search, and they provide stronger tests of both serial and parallel
processing architectures than are possible using mean RTs aone or
accuracy alone.

In the SAT paradigm, the observer is interrupted by a cue to
respond (response cue) at one of several times after display onset.
The cue times span the full time course of processing, about
0.1-2.0 siin the case of visual search. Observers are instructed to
respond as quickly as possible following the response cue, and
accuracy is a dependent measure. This paradigm yields character-
istic functions of accuracy, usually measured by d’ (a bias-free
measure of discrimination accuracy) as a function of processing
time (measured as the time from display onset to the average RT
or total processing time). Figure 1 shows typical time—accuracy
functions, with associated performance from a standard RT con-
dition. Thetime-accuracy functions are shown as smooth curvesin
the figure but are generally measured by 5-9 points aong the
time-course function.

Standard RTs provide only partial information about the time
course of processing (see Figure 1). RT differences may corre-
spond to differences in processing time, limiting accuracy, or
both.? In many cases, standard RTs reflect asymptotic accuracy or
the limiting accuracy at long processing times (e.g., Dosher, 1984;
Dosher & McElree, 1992; McElree & Dosher, 1989), whereas the
dynamics of processing, as measured by the fast-rising portion of
the speed—accuracy function, are comparable over conditions (e.g.,
Figure 1A). Parallel search mechanisms may mimic the mean RT
patterns of serial search mechanisms in standard RT paradigms
(Luce, 1986; Murdock, 1971; Townsend & Ashby, 1983), whereas
SAT data may distinguish between serial and unlimited parallel
mechanisms by revealing the slower or equivaent full time
courses in different conditions (Dosher, 1976; McElree & Dosher,
1989). The full time course measurements from SAT paradigms
reveal separately the dynamics of visua search and the asymptotic
accuracy limitations in visual search. In this article, full time-
course data are used to evaluate newly developed probabilistic
models of serial and parallel search as well as variants that incor-
porate sophisticated guessing.

Serial processing models. Serial processing models predict
systematic slowing of the dynamics of processing—more gradual
rising portions of the time-course functions—at larger display
sizes (Dosher, 1976; Dosher & McElree, 1992; McElree &
Carrasco, 1999; McElree & Dosher, 1989, 1993). In visual search,
additional stages of seria processing are associated with increased
display load. A simple model of seria processing (McElree &
Dosher, 1993) assumes that each serial comparison has an expo-

nential latency (with time constant = determining the time distri-
bution for each individual comparison), so that the completion
times for a serial search composed of a given number of compar-
isons are described by a gamma distribution with corresponding
stage parameter («). Time—-accuracy (or SAT) functions reflect the
cumulative distribution of completion times of the whole search
process. The cumulative density function of the gamma distribu-
tionis

1 v
P(T<?t) = (al)!T‘"f et dt’, t>0,else0. (1)
0

This function is denoted in this article by G(t|r, ), which may be
generalized to include a shift by a base time (5).

Serial visual search terminates when a target is detected. If a
target is present, and a serial process is deployed randomly over
the display items, the target might be found first, second, etc. On
average, performance would reflect a probabilistic mixture of 1-
through n-comparison serial processes (a mixture of « = 1, a =
2,...,a =n). If thereisno target in the display, accurate search
would require processing all itemsin the display, and performance
would reflect the display size (¢ = n). On SAT trialsin which the
cue to respond occurs before the search process has yielded infor-
mation, the observer guesses randomly.

Figure 2 shows the predicted time course of visual search for the
simple serial process model for display sizes of 4 and 12 (see
McElree & Carrasco, 1999; McElree & Dosher, 1989). The slower
search process corresponding to serial search for a display size of
12 is seen in the slower rise time of the SAT function. The effect
of display size on the rise time is an important signature of serial
models.

Parallel processing models. Unlike serial models, which as-
sume that attention-demanding comparison operations are de-
ployed at different display locations in succession, in parallel
processing models, comparison operations begin at all display
locations simultaneously, although the evaluation of different lo-
cations may finish at different times (e.g., Townsend & Ashby,
1983). Unlimited-capacity parallel mechanisms may predict little
or no variation in search time as a function of the number of items
if the decision rule is especialy simple. Modest slowing as a
function of the number of parallel comparisons may occur if the
decision rule requires waiting for several simultaneous comparison
processes to complete (e.g., McElree & Dosher, 1989; Ratcliff,
1978). Finally, parallel models may predict much slower dynamics
associated with more comparisons if the processes operating si-
multaneously compete for limited-capacity resources and thus
mimic serial models in processing dynamics (and they may yield
different predictions for performance under certain conditions,
such as for multiple-target displays [Miller, 1991; Townsend &
Ashby, 1983]). In this article, we compare unlimited-capacity
parallel models to serial models.

SAT and visual search. McElree and Carrasco (1999) were the
first to apply speed—accuracy methods to visual search. They
compared easy orientation feature searches with more difficult
orientation and color conjunction searches. Conjunction search

2 The time—accuracy (or SAT) functions may reflect either a continuous
accrua of information over time or the cumulative distribution of comple-
tion times of a discrete process (e.g., Dosher, 1976, 1979, 1981).
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Figure 1. Four sets of hypothetical speed—accuracy trade-off curves consistent with the same response time
(RT) data. (Based on Figure 12 from “Effect of Sentence Size and Network Distance on Retrieval Speed,” by
B. Dosher, 1982, Journal of Experimental Psychology: Learning, Memory, and Cognition, 8, p. 199. Copyright
1982 by the American Psychological Association. Adapted with permission.) Each curve is an exponential
approach to a limit, characterized by intercept, rate, and asymptote. Experimentally, this would be estimated
from 5 to 7 points (not shown) on the time—accuracy functions. RT data (shown here as open circles) for
Condition A are superior to (shorter and more accurate than) those for Condition B. Yet this is consistent with
underlying processes that differ only in asymptote (A), only in rate (B), only in intercept (C), or in al three (D).
A: Conditions A and B have the same intercept and rate and differ only in asymptotic accuracy. B: Conditions
A and B have the same intercept and asymptote and differ only in rate. C: Conditions A and B have the same
rate and asymptote and differ only in intercept. D: Conditions A and B differ in intercept, rate, and asymptote.
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Figure 2. The predictions of a simple serial search model for display
sizes of 4 and 12. Visua search completes after the ith comparison with
probability 1/n for target-present trials and after the nth comparison for
target-absent trials. Thus, accuracy is modeled with probabilistic mixtures
of 1- to n-comparison gamma distributions. (In this example, initia time
offsetty =150 ms; 7= 75ms;a=1...4,0r 1... 12; asymptotes scaled
at 3.3 and 2.1 d', respectively, for display sizes of 4 and 12.) The dashed
lines indicate the point where the curves reach 7z of asymptote.

exhibited slower processing for displays with larger numbers of
items, whereas feature searches were relatively unaffected by
display load. The degree of slowing in the time dynamics of search
for large display sizes in conjunction searches was argued to be
larger than expected for an unlimited-capacity parallel model. On
this basis, feature and conjunction searches were both said to
reflect parallel processes, with conjunction searches showing
greater than expected sensitivity to display load. However, no
parallel models were evaluated directly for fit to the data.

We elaborate the simple serial model to incorporate identifica-
tion errors into the time-course predictions, and we provide an
analogous parallel model of visual search. The simple serial model
has overpredicted the impact of the number of items on visua
search dynamics, even for a difficult conjunction search (McElree
& Carrasco, 1999). The elaborated serial model provides the best
possible opportunity for the serial model to fit time-course data
with only modest display size effects, because it reduces the
predicted impact of display size. The elaborated parallel model is
exactly analogous to the serial model and also alows a direct
quantitative analysis of the parallel processing architecture.

Asymmetric visual search was chosen for the first applications
and tests of the models because search asymmetry isavery ssimple
design theoretically, involving only role reversal of two stimuli. In
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contrast, the conjunction search or other searches with mixtures of
distinct distractors may be subject to a range of subset selection
mechanisms (Dosher, 1998; Egeth et a., 1984). Decision models
might need to be elaborated further if different subsets of distrac-
tors are processed at different speeds or with different accuracies.
A related application of the models (Dosher, Han, & Lu, 2003) has
compared visual search with homogeneous and heterogeneous
distractors.

Elaborated Models With Comparison Error and Guessing

Inthisarticle, we develop probabilistic serial and parallel search
models that incorporate error-prone visual comparison processes
and guessing. The probabilistic models incorporate the impact of
errors on the time course of visua search. Errors that lead to (a)
incorrect early target “detection” (false alarms) and rapid comple-
tion and (b) overlooked targets (misses) and unnecessarily pro-
longed searches impact the predicted magnitude of processing-
time differences as a function of display size. As such, these
models are among the first to fully incorporate accuracy and time
course into the same model of visual search. Prior signal-detection
models of visual search—to which these models are strongly
related—were pure accuracy models that could not account for
processing times. Early attention models (e.g., the feature integra-
tion model) were pure time models that could not account for error
patterns. These new search models are broadly cast in a signal-
detection framework. In this case, errors may arise from three
sources. misclassification of a target element, misclassification of
some distractor element, or guessing in cases in which no infor-
mation is yet available.®

Probabilistic serial search model. Figure 3 shows a schematic
of a probabilistic serial comparison model of visual search. In the
elaborated probabilistic serial model, each item in a display is
searched successively in a random order. Each comparison has
some probability of correctly classifying the display item, which
may depend on the item type (p, for j = target or distractor).
Initially, the observer isin aneutral, or guessing, state. Classifying
an item (correctly or incorrectly) as a target moves the observer
into a positive information state; the negative information state is
entered when al items in the display are classified (correctly or
incorrectly) as nontargets.

The time per comparison is, by assumption, distributed expo-
nentially (with time constant 7). This yields a search process that
is a probabilistic mixture of gamma densities with different num-
bers of comparison processes («), G(t|r, «). For the elaborated
model, unlike the simple serial model, overall performance is not
simply an equal mixture of finding the target first, second, and so
on, for target-present displays and an N-stage search in the target-
absent displays (where N is the number of display items), but
instead it is a model-determined weighted mixture. For target-
absent displays, it is possible to incorrectly complete the decision
after asingle comparison if adisplay item isincorrectly classified
as a target. For target-present displays, the target may be over-
looked and correct responses may reflect false positives to distrac-
tor elements. The elaborated serial model implements a cal culated
probabilistic weighting rule that incorporates errors and deter-
mines both the completion time and the accuracy of the search.

Let P+ and P, be the probabilities of correctly identifying a
target and a distractor, respectively, and N be the display size. For
displays containing the target, the probability of entering the

positive information state (correctly or in error) by timet following
display onset is

1 N
P(t|TP) = [N > Py G, m)]

m—

1

Z|

N
m=2

(1 — po)G(t| 7, K + l)]

k=

N-1 N-m-1
+ N2 2 PN pops(l - po)Gltlr, m+ k+ 1)1.

m=1 k=0

@)

The three terms of the equation correspond to the three possible
classes of events: (a) correct identification of the target and also
correct classification of al distractors evaluated prior to the target,
(b) incorrect identification of a distractor as a target prior to
consideration of the target, and (c) incorrect identification of some
distractor as atarget following correct identification of al distrac-
tors processed prior to the target and a miss of the target.

This equation basically counts various cases and their probabil-
ities (at t — <o) and then further evaluates the probability of having
achieved an outcome by some time t. The probability of any
combination of events is composed of the probabilities of each
element (target and distractors) ultimately going to accurate or
inaccurate identification, which is reflected by successful target
processing, P+, unsuccessful target processing (1 — Py), success-
ful distractor processing P§, and unsuccessful distractor process-
ing (1 — Pp), where the superscript k is the power indicating the
number of successfully or unsuccessfully identified distractors.
Index m is the position in the search order in which the target
location is examined (1st, 2nd, . . .). The remaining portions of the
equation calculate the probability of having completed m stages by
time t with time constant 7, G(t|7, m). (An additional fixed con-
tribution to completion time, reflecting encoding and response T,
may be included to shift this equation by T, [i.e, t =t — T,, for
t" > T,].) Part a of the eguation (as delineated in the previous
paragraph) counts cases in which the target is correctly identified
(and search completed) in position m following m — 1 correctly
identified distractors. This term sums over each of the N possible
values of m, each with probability 1/N. The probability of each
case is po~ *p; multiplied by the probability of having completed
the m stages by time t, G(t|, m). Part b of the equation deals with
cases in which a distractor is incorrectly identified as a target
(leading to the correct response but for the wrong reason) before
the target is processed. If the target were evaluated in Position 1,
it would not be possible to have previously misidentified a dis-
tractor (so the index mruns from 2 to N), and there may have been
between k = 0 and k = m — 2 distractors that were correctly
identified before a distractor was misidentified [pK(1 — pp)].
multiplied by the probability of having completed k + 1 compar-
isons by timet. Part ¢ of the equation considers the cases in which
a distractor is incorrectly identified as a target (leading to the
correct response but for the wrong reason) after the target is

2 These models are not equivalent to high-threshold models, because it

is possible to misclassify nontargets as targets.
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Figure 3. The elaborated probabilistic serial search model. Display elements are evaluated serially and in
random order. P+ and P, are the probability of correctly identifying a target (C) and distractor (O),
respectively. The observer begins in the neutral information state (SO) and enters the positive informa-
tion state (S+) when the target or any distractor (in error) is identified as a target or enters the
negative information state (S—) when the target (in error) and/or all of the distractors are identified as
distractors. The search times are drawn from a gamma distribution with an order determined probabilisti-
cally by the error-prone process. g is the probability of guessing yes in the no-information state. Y = yes;

N = no.

processed but missed. In this case, m — 1 distractors are correctly
processed prior to the processing of the missed target in search
position m, followed by k distractors correctly processed after the
missed target, and finaly by the incorrectly identified distractor.
The only other case is that in which all distractors are processed
correctly and the target is missed, but this leads to the negative
information state, which is considered next.

The probability of entering the negative information state for
displays containing atarget requiresthat all distractors be correctly
identified and that the target is misidentified (all comparisons end
without identifying an element as a target): that is,

P ({TP) = p5 (1 — p)G(t|7, N). (©)

For displays without atarget, the formulations are simpler because
it is not necessary to count cases with atarget element separately.
Without a target, the probability of entering the positive informa-
tion state (in error) counts cases in which the error occurs in
Position 1 to Position N and the probability of having completed m
comparisons by time t. This leads to

N
P*({TA) = >, p5i(1 — pp)G(t

m=1

T, m). (4

Here, m is the first process in which a distractor is incorrectly
identified as a target. For displays without a target, the probability
of entering the negative information state requires all distractorsto
be correctly so identified. This leads to

P~(t|TA) = p3G(t|7, N). (5)

Finaly, the probability of yes and no responses is calculated by
assuming that the observers say “yes’ when in the positive infor-
mation state, say “no” when in the negative information state, and
otherwise guess “yes” with probability g:

P,es(t|TP or TA) = P*({|TP or TA)
+ gl —P*(t|TPor TA) — P~ ({|TP or TA)], (6)

and

P.o(t TP or TA) = P (t/TP or TA)

+(1-g[1—-P ({{TPor TA) — P*({|TPor TA)]. (7)

A measure of bias-free accuracy, d’, for the model is calculated
from the predicted hit and fase aarm rates as a function of
processing time: d' = Z(Pyo) — Z(1 — Pp).

This development assumes that guessing is constant through-
out the time course of the search. An elaboration of this
model that includes “Bayesian” (sophisticated) guessing based
on the number of comparisons completed without finding a
target, detailed in the Appendix, is also developed and evalu-
ated in more detail in Experiment 2. The asymptotic levels of
the model SAT functions are fully consistent with signal-
detection theory.

Probabilistic parallel model. An elaborated parallel search
model, analogous to the elaborated serial search model, was de-
veloped (Figure 4). The accuracy of visua search (Eckstein, 1998;
Palmer, 1994; Palmer et al., 2000; Shaw, 1982; Sperling & Dosher,
1986) follows a signal-detection model, in which display-size
effects are accounted for by the inclusion of an increased number
of sources of information. In this account of display-size effects,
perceptual coding of individual items is unaffected by the display
size (the coding capacity is unlimited), and reduced accuracy in
larger display sizes solely reflects the statistics of information
integration. In addition to assuming unlimited-capacity perceptual
encoding, the model developed here aso assumes unlimited-
capacity parallel temporal dynamicsin that the speed of processing
individual items does not depend on the number of elementsin the
display.

In the paralel model, all comparisons begin simultaneously.
The observer enters the positive information state when any com-
parison identifies a target (correctly or in error) and enters the
negative information state once all items are identified (correctly
or in error) as nontargets. P+ and P, are the probability of
correctly identifying atarget and distractor, respectively, and N is
the display size. Here, G(t|r, o) simply denotes the finishing-time
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MY

Figure 4. The elaborated probabilistic parallel search model. Display elements are evaluated in parallel at the
same time. Py and Py, are the probability of correctly identifying a target (C) and distractor (O), respectively.
The observer beginsin the neutral information state (SO) and enters the positive information state (S+) when the
target or thefirst of any distractors (in error) isidentified as atarget or enters the negative information state (S—)
when the target (in error) and/or the last of al of the distractors is identified as a distractor. Completion times
for each evauation are drawn from a gamma distribution. g is the probability of guessing yes in the

no-information state. Y = yes, N = no.

distribution for each comparison.* Then, the probability of enter-
ing a positive information state for displays with a target is

N-1

P({TP) = > (

m=0

(N—1)!

mN=—m= 1)1 prps ™ (1 — pp)"

Nt N-— 1)!
xX{1-[1- G(t|1', a)]mﬂ}) + 2 [rn'(l(\l——m)—l)l

X (1= pops ™ML = po)"(1 — (1 - G(tr, a))m)]- ®)

This equation® counts the cases in which the target is either
correctly identified or not and the cases in which there are m
(potentially) misidentified distractors.® The factorial notation
counts al the cases (m = 0 to m = N — 1) to caculate the
probability of each state. These refer to latent processes that would
ultimately complete correctly or in error, some of which may not
actually run to completion if the first target-present element eval-
uation completes (correctly or in error) earlier. The timing is then
implemented as a race model—the probability of having com-
pleted at least one of the elements (latently) identified (correctly or
in error) as a target by time t is 1 minus the probability of all the
m (latently) misidentified distractors (plus the target in some cases)
having not yet completed by time t(1 — (1 — G(t|, a))™"%). The
first part of the equation considers cases in which the target would
be correctly identified, and the second part considers cases in
which the target would be incorrectly identified.

Entering the negative information state requires that all items be
classified (correctly or in error) as distractors and that all of these
classifications are complete. Sincethereisonly one case that meets
this definition, the probability of entering a negative information
state for displays with a target is simply

P~ ({TP) = (1 — ppb ‘Gt 7, )™, €)

For displays without a target, the positive information state is
entered as soon as any distractor ismisidentified asatarget. Again,
cases are counted for m (potential) misidentifications, and the time
to the first (error) target identification is a race between the m

potential misidentified distractor searches. Hence, the probability
of entering a positive information state for displays without a
target is

N

N!
P ({|TA) = >, m(N=m! po (1~ pp)™

X{1-[1-G(tlr, 0)]". (10)

For displays without atarget, the negative information state is entered
if al N distractors are correctly identified and when the processing of
dl N itemsis complete. There is only one such case. The probability
of entering the negative information state by time't is

P~ (t|TA) = p3G(t| T, a)™. (11)

Finaly, asin the serial model, guessing operates according to the
rules specified in Equations 6 and 7.

From these values, accuracy (d’) as a function of processing
time can be computed and compared to the observed time
course of visual search measured by the SAT functions.” Again,
in this model, guessing is stable throughout the time course of
processing. Equations for a Bayesian sophisticated-guessing

4 The completion times for each comparison reflect a distribution with
an estimated average time and shape. The distribution of completion times
for each individual comparison is drawn from a gamma distribution, G(t|r,
«). Here, the gamma distribution is merely a convenient distribution of
finishing times, where the T and « determine the mean, standard deviation,
and degree of skew of the finishing-time distribution.

5 By standard convention in mathematics, the value of O factorial (0!) is
defined as 1.

6 Because the first item to be classified as a target ends the search, this
conceptualization counts cases by counting outcomes as though processes
had run to completion and are known (latent outcomes) and then calculat-
ing the probability that at least one will have been classified as a target
(correctly or in error) by time t.

7 In the pardlel model, G(t|r, «) absorbs the initia encoding and RT. If an
additiona encoding and RT parameter T, was used in the parallel modd, it
was possible to achieve an equivaent fit by setting this parameter to zero.
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model with parallel processing appear in the Appendix and are
considered and compared to models without guessing in the
treatment of Experiment 2.

Experiment 1. RT

In this experiment, the asymmetric visual search tasks were to
search for a C among Os or an O among Cs. Search for an O
among Cs has previously been shown to yield larger RT increases
as a function of display size than a search for C among Os
(Triesman & Gormican, 1988). The previous reports used random
displays with mixed eccentricity and heterogeneous orientations.
The purpose of Experiment 1 was to replicate the search asymme-
try for standard RTs under our annular, eccentricity- and density-
matched display conditions. Two variants of the C-and-O searches
were evaluated, one in which the C appeared in only one orienta-
tion (gap right) and one in which the C randomly appeared in four
orientations (gap right, gap left, gap up, and gap down), which is
a form of distractor heterogeneity. The multiple-orientation, het-
erogeneous variant is the more typical. The results indicate that
standard asymmetry effects could be obtained in the simpler ho-
mogeneous annular displays, which determined the test conditions
for the speed—accuracy experiment (Experiment 2).

In random or in grid displays, eccentricity effects may affect
visual search results (Carrasco, Evert, Chang, & Katz, 1995;
Carrasco, McLean, Katz, & Frieder, 1998). The average retina
eccentricity of targets in random and grid displays tends to con-
found eccentricity with display size, and targets in more eccentric
locations are detected and identified less accurately and with
longer RTs. In these studies, we chose annular displays that
equated the eccentricity of all display items (see also Dosher et al.,
1998). A sample tria is illustrated in Figure 5.

Observers were instructed to fixate a central warning stimulus,
but they were not specifically instructed to maintain fixation while
searching the display (unlike in Experiment 2), which remained
available until response. This corresponds with the most often
tested (standard) form of the visual-search paradigm.

Method

Observers. Twenty-two observers (10 in the multiorientation version
in which Cs varied in orientation, 12 in the single-orientation version in
which Cs were in a single orientation) participated in a 1-hr session for
undergraduate course credit. All observers reported normal or corrected-
to-normal vision.

Design. This experiment tested the C-among-Os (easy) and
O-among-Cs (hard) conditions in separate blocks of trials. The tested
display sizes were 4, 8, and 12 elements, arranged around an annulus to
equate eccentricity and lateral interactions (see below). Half of the trials
included a target and half did not. Trials with different display sizes and
target presence—absence were presented in a random order. Blocks con-
sisted of 480 trias, with 80 trials per condition. Blocks of easy and hard
searches were aternated within a session.

Stimuli. The stimuli consisted of Os and Cs. The O was a circle, and
the C was acirclewith agap. They were rendered as grayscale images with
antialiasing on a 32 X 32-pixel grid. The images were displayed on a
Leading Edge Technology 1230V monitor controlled by a Vista image
board on a PC computer. The stimuli subtended 0.98° X 0.98° at aviewing
distance of approximately 60 cm. The elements were arranged on an
annulus with radius of 4.12°. There were 15 possible equally spaced
positions on the annulus, but the location of these positions was random-
ized (the annulus was rotated randomly) on each tria (see Figure 5).

Elements of displays of Size 4 were positioned at four adjacent locations;
displays of Size 8 consisted of two sets of elements in four adjacent
locations, with a one-location space separating the sets; displays of Size 12
consisted of three sets of elements in four adjacent locations, with a space
between sets. This arrangement equated eccentricity and the lateral inter-
actions for al displays (i.e., one half of elements were adjacent to a space,
and one half were internal items). Finally, the fine position of each element
was randomly “jittered” (auniform distribution from —4 to 4 pixels) in the
horizontal and vertical directions. This fine position jittering is often used
to minimize global contour cues. RT was measured from onset of the
display until response.

Procedure. The search type, C-in-Os or O-in-Cs, was blocked. A
fixation plus sign appeared for 250 ms, followed by the test display, which
remained available until the observer responded by pressing the J key for
target-present trials or the F key for target-absent trials. Observers were
instructed to respond “as quickly and accurately as possible.”

Results

The results of the standard RT experiments are shown in Fig-
ure 6. As expected, searching for an O in Cs was more difficult
than searching for a C in Os for both the multiple-orientation and
single-orientation versions of the experiment.

An analysis of variance (ANOVA) of the heterogeneous-
orientation RT data (Figures 6A and 6B) yielded significant effects
of the type of search (C-in-O vs. O-in-C), F(1, 9) = 40.29, p <
.01; target presence, F(1, 9) = 39.94, p < .01; display size, F(2,
18) = 5142, p < .01; and all interactions (al ps < .01). An
analysis of the accuracy data exhibited small but significant dif-
ferences in the proportion of errors for target presence (0.98 vs.
0.94), F(1, 9) = 21.41, p < .01; display size (0.96, 0.96, 0.94),
F(2,18) = 11.54, p < .01; and severd interactions. The RT slopes
for the O-in-C searches were larger (39 ms and 81 ms, respec-
tively, for target present and target absent) than for the C-in-O
searches (14 ms and 37 ms, respectively), replicating the search
asymmetry under the controlled display conditions.

An ANOVA of the homogeneous-orientation RT data (Figures
6C and 6D) yielded significant effects of the type of search
(C-in-O vs. 0-in-C), F(1, 11) = 22.02, p < .01; target presence,
F(1, 11) = 24.68, p < .01; display size, F(2, 22) = 36.05, p < .01;
and all interactions (all ps < .01). An analysis of the accuracy data
indicated very small but significant effects of target presence (0.97
vs. 0.94), F(1, 11) = 7.13, p < .02; display size (0.97, 0.95, 0.94),
F(2,22) = 5.01, p < .02, and the Target Presence X Display Size
interaction, F(2, 22) = 8.54, p < .01. Again, the expected search
asymmetry was found: The RT slopes for the C-in-O searches
were larger (38 ms and 90 ms, respectively, for the target-present
and target-absent conditions) than those for the O-in-C searches
(16 ms and 43 ms, respectively). All of these slopes exceed the 10
ms per item heuristic cutoff for serial processing (in one case, only
dightly so; Cave & Wolfe, 1990).

8We aso investigated several other sets of stimuli. The often-cited
search asymmetry for tilted lines and vertical lines did not yield the
signature asymmetry under the annular display conditions used in these
experiments. We also pilot tested pseudocharacters consisting of atriangle
and a triangle with a line (forming an arrow). This produced RT asymme-
tries but did not alow modification to control accuracy levels with the
shorter, fixed viewing times used in the SAT experiments. Ellipses and
circles were aso pilot tested, but the accuracy of asymmetric searches was
problematic. The C-and-O stimuli yielded RT asymmetries, yet search
accuracy could be titrated by varying the size of the gap in the C.
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Figure5. The stimulus layouts and sample trial sequences. A: This display of Size 4 illustrates a search for aC in
Os. B: This sample display of Size 12 illustrates a search for an O in homogeneous Cs. In homogeneous displays, al
Csopen to theright; in heterogeneous displays, Cs appear randomly open to theright, theleft, up, or down. All display
elements gppear on an annulus at 4.12° of visual angle, with dight position jitter. Displays of Size 12 incorporate
Spaces between groups of 4 to equate the local interactions of the Size 4 displays. C: A sample trial sequence for the
standard response time (RT) tridls. D: A sample trial sequence for the speed—accuracy trade-off (SAT) displays.

Discussion

These results document the existence of an asymmetry in search
for the C-O stimuli for eccentricity-controlled display conditions.
They replicate in annular displays previous reports of this asym-
metry in grid arrays (Treisman & Gormican, 1988). The slopes (ms
per item) for visual search were higher for O-in-C searches than
for C-in-O searches. Generally, the visua searches were more
difficult (yielding higher slopes) for the heterogeneous-orientation
condition than for the homogeneous-orientation condition.

The subsequent SAT analysis of this search asymmetry inves-
tigated the homogeneous, or single-orientation, stimuli. The pri-
mary reason for this was theoretical—the single-orientation C-O
task yields a purely symmetric task structure. In the more tradi-
tional multiple-orientation case, the target O is known exactly and
the distractors are heterogeneous (four orientations) in the O-in-Cs
condition, whereas the target is unknown (one of four orientations)

and the distractors are homogeneous (of asingle orientation) in the
C-in-Os case. In the single-orientation case, however, the task is
perfectly matched. The target is known exactly and the distractors
are homogeneous in both forms of the task.

Experiment 2: Time Course of Search

Experiment 1 documented a typical asymmetric pattern for
visual search (Treisman & Gormican, 1988) in unlimited viewing
conditions. Searching for an O in Cs was more difficult than
searching for a C in Os, leading to larger RT slopes. Both O-in-C
and C-in-O searches yielded significant increases in RT and ac-
curacy per display item and, hence, would be associated with a
serial search process. In Experiment 2 we measured the time
course of these searches using speed—accuracy methods in order to
evaluate seria and parallel search architectures. Time-limited dis-
plays guaranteed the measurement of covert attention.
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Figure6. Average correct response times (RTs) and error rates as afunction of display size for search with free
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present; TA = target absent.

Method

Observers.  Six observers participated in a series of 10—12 sessions and
were paid for their participation. All observers reported normal or
corrected-to-normal vision.

Design. C-in-O and O-in-C searches were performed in separate
blocks. Cs appeared in one orientation, with the gap on the right (see
discussion in Experiment 1: RT). Target-present and target-absent displays
of Sizes4 and 12 were tested. Processing time was manipul ated with seven
cue delays of 0, 0.05, 0.15, 0.30, 0.50, 1.15, and 1.80 s after display
duration offset, for net cue delays from stimulus onset of these values plus
the display duration. All tria types within a block were tested in random
order. After initial training in the SAT methods with display duration of
150 ms, observers participated for six blocks (n = 60 trials in each of the
28 conditions, or 1,680 trials) with a display duration of 100 ms, followed
by six blocks (n = 60 trials per condition, or 1,680 trials) with a display
duration of 50 ms.

Stimuli and procedure.  Thedisplay layout and stimuli were identical to
those of Experiment 1. The procedure was similar to Experiment 1 but with
several differences. The duration of the search display was limited to either
100 or 50 ms. Search was interrupted with a tone at one of seven cue
delays. Observerswere instructed not to respond until the tone cue and then
to respond as quickly as possible. RT was measured from the onset of the
display and from the onset of the response cue. The RT to the cue was
presented as feedback for 500 ms following the response.

Analyses. The percentage of yes (target-present) responses and mean
RTs were tabulated for each display size, cue delay, and target present—
absent condition. Percentage yes data were used to calculate d’, a bias-free
measure of discrimination (d' = z,;, — z,). Probabilities of zero or one
were corrected (Macmillan & Creelman, 1991) by the factor 1/2N (or
1/120) to yield measurable values. This factor also limited the predicted d’

in model fits. Time—accuracy functions graph d’ as a function of total
processing time, or cue delay plus RT to the cue, corresponding to the total
average time between display onset and response.

Although seria and parallel models are fit to the SAT data, the asymp-
totic accuracy and dynamics (speed of information accumulation) are also
estimated from a description of the data as an exponential approach to an
asymptotic level:

d =A[1-e P9 t>3§; 0otherwise. (12)
Here, A is the asymptotic (maximal) accuracy, the intercept o is the point
at which accuracy first rises above chance, and the rate B describes the
speed of rise from chance to asymptote. This equation provides an excel-
lent empirical summary of time—accuracy functions and also allows com-
parison to other published data (Dosher, 1976, 1979, 1981, 1982; McElree
& Dosher, 1989, 1993; Reed, 1973; Sutter & Graham, 1995; Sutter &
Hwang, 1999).

Both the exponential model and the probabilistic serial and parallel
search models were fit to time—accuracy d’ data by minimizing the squared
deviations between the model and the data:

> (b - )

where d, is the observed d’ value and d, is the d’ value predicted by the
model. The majority of the model fits were applied to aggregate data,
which was computed by first calculating ad’ value for each observer and
then averaging these values. A Monte Carlo estimation of the standard
deviation of the mean d's, averaged over observers as were the data, was
0.12 = 0.02. Thus, the unweighted least squares model fits are a very good
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approximation to a weighted least squares fit and, hence, to maximum
likelihood solutions.® Minimization was accomplished using either an
iterative hill-climbing agorithm (Reed, 1976) similar to STEPIT (Chan-
dler, 1969) or, for the serial and parallel models, by nonlinear minimization
functions in MATLAB. The quality of the fit is summarized by

> (d - d)?
i=1

W:l*&, (13)

> (d - d)?
i=1

(n—1)

where d; and d, are as described above, d is the mean of the observed d’
values, n is the total number of predicted data values, and k is the number
of model parameters. The fidelity index r? is the proportion variance
accounted for by the model (calculated by replacing n — k in the R?
equation by n — 1), R? is the percent variance accounted for by the model,
adjusted by the number of free parameters (Wannacott & Wannacott,
1981). Nested models were compared using an F test:

(Eresmcted - $EfuII)
(k\‘ull - Keﬂricted)
(Efull) '
(n = Keun)

Fdfl,dfz = (14)

The SSEs are the sum of squared errors for a more restricted and fuller
model, and the ks are the number of model parameters. The degrees of
freedom are dfl = (K — Keesrictew) @d df2 = (1 — kyy).

Results

Speed—accuracy functions. The average RTs to the cues were
essentially unaffected by display size or search difficulty, but they
varied slightly over the shortest few cue delays, asistypica inthe
SAT paradigm (e.g., Dosher, 1976; Reed, 1973). Total processing
time is the average time from display onset to response.

Figure 7 shows the proportions of yes (target-present) responses,
averaged over observers, as afunction of total processing time for
target-present and target-absent displays of Size 4 and 12 for
C-in-Os (easy) and O-in-Cs (difficult) searches. For the easy
C-in-O searches, both hit performance and false alarm perfor-
mance were better for display sizes of 4 than of 12. For the more
difficult O-in-C searches, there were small differences in false
alarm rates and larger differences in hit rates for the two display
sizes. The shift to compensate for false alarms may be character-
istic of the more difficult search.

The corresponding average time—accuracy functions (d’ vs. total
processing time) are shown in Figure 8. The data for 100-ms
displays and for 50-ms displays are displayed separately. The
average data are representative of the individual observer data
(available from the authors). The smooth functions are best-fitting
exponential models.

The data for the 100-ms and 50-ms display conditions are quite
similar. The 100-ms data were collected first, and the 50-ms data
were collected second. The small quantitative differences between
these two conditions reflect both the difference in display duration
and the different levels of practice. The 50-ms display duration
alowed us to cue responses earlier during the search process. We
treat the two sets of data as independent replications.

Empirical estimates of asymptotic (maximal) d' accuracy were
calculated by averaging the last three cue delays (e.g., Dosher,
1982). These accuracy data were consistent with the difficulty
patterns usually exhibited in RT. The C-in-O searches achieved
higher asymptotic accuracy than the O-in-C searches (for 100-ms
displays: averaged’ = 3.08 vs. d' = 2.36, A = 0.72; for 50-ms
displays: averaged’ = 3.20vs. d’ = 1.98, A = 1.22), showing the
expected relative search difficulty. Similarly, displays of Size 4
yielded higher accuracy than displays of Size 12 (for 100 ms:
averaged’ = 3.23vs. d' = 2.21, A = 1.01; for 50 ms: average d’
= 3.04vs d = 213, A = 0.91), revealing the expected increase
in difficulty with display size. Finaly, the impact of display size
was larger in the O-in-C search compared with the C-in-O search
(for 100-ms displays: A = 1.11 vs. A = 0.92; for 50-ms displays:
A = 1.04 vs. A = 0.78), showing asymmetry in asymptotic
accuracy in the time—accuracy functions. In all cases, the standard
error of these differences was approximately 0.07.

The results of exponential model fits (see the Analyses section)
are summarized in Table 1. The exponential fits provide a standard
description of time—accuracy functions for individual observer
data and average data. (The next section considers direct fits of the
probabilistic search models.) Exponential models parameterize
each time—accuracy function with an asymptote (1), arate (8), and
an intercept (8). Asymptotic accuracy differed significantly be-
tween conditions. A 4 A, 1 8, 1 § model (common B and 6) fit the
data quite well, yielding R? for the average data of .975 (range over
observers: .835-.948) for 100-ms displays and .961 (range over
observers: .896—.942) for 50-ms displays. This simplest model, in
which the two different forms of searches (and, hence, search
asymmetry) had identical temporal dynamics (identical starting
points and identical rates of increase), provided the most parsimo-
nious best fit for 8 of the 12 individual observer fitslisted in Table
1. In 4 of 12 individual observer fits, however, there was some
evidence that the speed of search, as measured by the exponential
rate, was somewhat faster for the C-in-O searches compared with
the O-in-C searches.’® The parameter values associated with a
model (4 A, 2 B, 1 8) in which rate parameters (search speeds) are
dlightly different for C-in-O and O-in-C searches are listed in
Table 1 for individual observers and for the average data. Signif-
icance was evaluated using nested F tests.

In no case was there systematic evidence of the slower search
speed in larger display sizes. Thus, these results are qualitatively
more consistent with parallel than with serial processing architec-
tures. This is because parallel search architectures, in which all
display elements are processed at the same time, predict that the
time course is nearly independent of display size, whereas serial

© As noted by Miller (1996), the standard error of observed d's can vary
fairly substantially. Here, however, the serial and parallel models are fit to
d’s averaged over observers. The standard errors of the average d’s were
estimated assuming binomial variability on the observed proportions of hits
and false dlarms from each observer’s data, and then the d's were averaged
over observers as in the actual data. The estimated variability of these
average values was essentially identical for all observed d’s. The reason for
this is that the overal variability is largely controlled by variability be-
tween observers.

%1 three cases, display size had a marginal effect, but in each of these
the pattern was inconsistent with a standard display-size effect, and in none
of these cases was this finding replicated in both the 50- and 100-ms
display conditions for the same observers.
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Figure 7. Proportion yes (hits and false alarms) as a function of total processing time (test onset to response)
for target-present and target-absent conditions, for display sizes of 4 (open circles) and 12 (open squares) from
Experiment 2, for 100-ms display, C-in-O search (A); 100-ms display, O-in-C search (B); 50-ms display, C-in-O
search (C); and 50-ms display, O-in-C search (D). The individual symbols show the corresponding points for
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paradigm of Experiment 3. The RT-percent yes data from the RT paradigm fall on or near the corresponding
speed—accuracy trade-off (SAT) functions for 50-ms display durations and exhibit slightly better performance
than the SAT functions for 100-ms display durations. The small deviation of the RT points from the SAT
functions for 100-ms display conditions reflects improvements in performance due to practice.

search architectures predict a slower time course as display size
increases. Search asymmetry is a classic case generally associated
with serial search mechanisms, yet there is no evidence for dy-
namic slowing with increased display size in the speed—accuracy
data. In the next section, we explicitly evaluate probabilistic search
models, which provide a quantitative test of the detailed predic-
tions of parallel and serial models of visual search.

Probabilistic parallel search models. In this section, we pro-
vide a direct test of an elaborated parallel search model (PSM),
incorporating target and distractor classification errors. The PSM
was fit to the time—accuracy functions (d’ versus total processing
time). The speed—accuracy functions characterize the global time
course or dynamics (rate of accumulation of evidence) of visual
search. The predicted time course is controlled by the temporal
parameters of individual comparison operations, error probabili-
ties, and a decision rule. The PSM accounted quite well for the
time course of visual search, providing agood description of visual
search for conditions generally associated with seria search pro-
cesses. The models were tested separately on d’ data for the 100-
and 50-ms exposure durations, averaged over observers. Each
model was implemented in MATLAB, using nonlinear minimiza-
tion methods to find the best least-squares fit to the d’ data. A
lattice of PSM models was considered, from most highly con-
strained to less constrained. The most constrained model included
only two probability parameters (P, and P,), one for the proba

bility of correctly classifying Cs and the other for the probability
of correctly classifying Os—search asymmetry is accounted for
solely by changesin the assignment of the two stimuli to target and
distractor. This minimal model also includes three other parame-
ters: atime parameter  and parameter «, which jointly determine
the gamma distribution characterizing the completion times of any
single visual search comparison,™ and g as a guessing or bias
parameter, for five total parameters (2 P, 1 7, 1 «, 1 g model). In
aless constrained model, four classification probabilities of Csand
Os depended on the asymmetry condition, for a seven-parameter
model (4P, 17, 1, 1g). Findly, in the most elaborate variant,
al parameters—probabilities, timing, and bias parameters—dif-
fered for the two forms of the asymmetric search, for a 10-
parameter model (4 P, 2 7, 2 «, 2 g). Severa additional interme-
diate cases were aso considered.

The best-fitting model (4 P, 1 7, 1 «, 1 g) alowed independent
estimates of the identification probabilities for the C-in-O and
O-in-C conditions but identical temporal dynamics, yielding an r?
of .98—99. This was superior (ps < .02) to the simplified model

11 As described in the introduction, the gamma distribution simply
generates completion time distributions of arbitrary skew. In general, the
estimated o parameter was sufficiently large (>15) that the distribution
was similar to the normal distribution.
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2P, 11 1a 1g—r?~ .96—for both the 100- and 50-ms
duration data, as assessed by the nested F test.*? A full model with
completely independent parameter setsfor the different asymmetry
conditions and a total of 10 free parameters (4 P, 2 7, 2 «, 2 g) did
not provide reliable improvements in fit compared with the
7-parameter model, nor did other intermediate model variants.

Thus, the best-fitting model included four independent proba
bilities of accurate identification (4 P, 1 7, 1 «, 1 g). The best-
fitting parameters for this model were P = 0.99 and P, = 0.96
for the easier C-in-O searches and P+ = 0.99 and P, = 0.82 for
the more difficult O-in-C conditions, with a mean search time of
360 ms (corresponding to the average search time, defined by the
product of the parameters  of 0.009 and « of 39.7 for the gamma
distribution) and guessing parameter of 0.301, for the d’ data for
the 100-ms display duration. The values were P = 0.99 and Py
= 0.97 for the easier C-in-O searches and P+ = 0.99 and P, =
0.80 for the more difficult O-in-C conditions, with a mean search
time of 334 ms (r of 0.008 and « of 41.9) and guessing parameter
of 0.338 for the d’ data for the 50-ms display duration. Without
loss of generality, it was possible to fix « at a value of 40 and use
7 alone'; this yielded equivalent r? and probability and guessing
estimates. The 4 P, 1 7, 1 g, « = 40 model yielded equivalent
parameter estimates, with r> = 0.98 for both the 100- and 50-ms
display data. The best fitting model is shown by the smooth curves
in Figure 9. This unlimited-capacity probabilistic PSM provides an
extremely good account of the entirety of SAT functions in visual
search, as measured by d’.

The probabilistic PSM constrains the relative asymptotic search
accuracy over display sizes, consistent with an unlimited-capacity

decision process (e.g., Pamer, 1994). These decision models ac-
count for the reductions in search accuracy with increased display
size in terms of the reductions predicted by the decision structure
of an ideal observer. Additionally, the PSM provides one model of
time course that is also consistent with the signal-detection
account.

This model estimated probabilities of accurate evaluation for
individual target and distractor itemsin C-in-O (easy) and O-in-C
(hard) search conditions. Without atering the core parallel pro-
cessing architecture of the model, we can consider how these
estimated probabilities (hits and false alarms) can be remapped
from various signal-detection assumptions, leading to implications
for theories of search asymmetry. The probability estimates for
O-in-C from the best four-P model yielded an estimated equal-
variance d’ for each display item in the C-in-O condition of
approximately 4.1, whereas the equal-variance d’' of the same
items in the O-in-C condition was approximately 3.5. This differ-
ence was the basis for rejecting the two-P model, which attempted
to fit the asymmetry conditions with the hit and false alarm rates
in one condition mapped to the false alarm and the hit rates,
respectively, inthe other. A remapping that constrained the four Ps
to arise from a single distance d between the coded distributions
for C and O and with equal variances but allowed the hit and false

12 Although this baseline model achieved areasonably high r?, the visual
quality of the fit showed systematic deviation.

13 The value of « = 40 is somewhat flexible; values between 25 and 50
would be acceptable.
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Table 1
Exponential Descriptive Parameters for Experiment 2
Observer
Parameter Av. C.L. 1.C. E.H. P.T. R.A. D.W.
100-ms display
C-in-O: 4 3.59 3.46 4.08 3.81 3.70 3.16 3.50
C-in-0O: 12 A 2.65 2.74 3.44 2.75 3.13 1.75 2.19
O-in-C: 4 A 2.99 3.27 2.36 2.07 3.25 3.98 3.43
O-in-C: 12 A 1.85 2.52 2.15 1.09 155 2.18 1.88
C-in-O: B 9.91 14.00 6.36 13.00 10.00 7.16 8.58
O-in-C: B 6.67 9.30 3.90 5.10 4.61 6.53 12.01
Common & .333 .326 .328 341 .358 .358 .320
Adjusted R? .984 .858 .929 .959 913 915 .908
Significance * ns ns * * ns ns
50-ms display

C-in-0O: 4 A 4,01 4.07 3.67 4.14 4.42 4.50 3.79
C-in-O: 12 A 3.16 355 3.40 2.85 3.45 3.47 243
O-in-C: 4 A 291 3.06 142 2.19 3.67 4.08 3.33
O-in-C: 12 A 177 2.49 0.61 114 178 2.81 1.92
C-in-O: B 8.62 11.05 5.67 11.51 8.61 6.99 9.64
O-in-C: B 6.46 7.79 6.28 8.11 434 591 8.98
Common & .295 278 .288 .301 .309 .309 .304
Adjusted R? .981 931 .902 .930 943 .908 919
Significance T ns ns t ns T ns

Note. Parameters are listed for a4 A, 2 B, 1 6 exponential model in which each condition has a separate
asymptote (A), rate (8) may vary for C-in-O (easy) versus O-in-C (hard) searches, and the intercept () is
common. Adjusted R? is the percentage variance accounted for, adjusted for the number of free parameters. Av.
= average, * = easy rate is significantly higher than hard rate (p < .05); T = easy rate is significantly higher
than hard rate, and display size also has a significant but erratic effect on intercept.

aarm rates to differ through different placement of criteriain the
two search conditions (e.g., four Ps were replaced with oned, o =
1.0, and two criterig, one for C-in-O and one for O-in-C searches,
from which the four Ps were calculated) was also rejected. How-
ever, it was possible to remap the four independently estimated Ps
into a model with one distance d, a standard deviation o for the
identification distribution of Cs (the standard deviation ¢ for the
identification distribution of Os set to 1.0), and two criteria, one for
C-in-O and one for O-in-C searches. This six-parameter model (1
d, 1 o, 2 criterig, 1 7, 1 g, « = 40) yielded an equivalent fit to the
best-fitting six-parameter model (4 P, 1 7, 1 g, « = 40), of which
it isaclosely equivalent but more constrained remapping. For the
100-ms data, the 4 Ps were calculated from an estimated d’ = 3.33
and o = 0.71; for the 50-ms data, the 4 Ps were calculated from
an estimated d’ = 3.05 and ¢ = 0.50. This yielded r?s of .98 for
both data sets. In either case, the overal accuracy in the C-in-O
searches was higher than that in the O-in-C searches.

The PSM provides a good account of visual search performance
in this classic example of asymmetric search, in which perfor-
mance is generally attributed to serial search processes. The rela
tionship between the two asymmetric search conditions was also
evaluated within the framework of the PSM. The accuracy of
identification for Cs and Os differed depending on the assignment
of C or O as the target.

The analysis that remapped the four probabilities of correct
identification (P and Py, for C-in-O and for O-in-C) in a signal-

detection analysis was consistent with a generalized signal-
detection structure in which either (a) the distance d between the C
and O distributions depended on the search condition (e.g., de.in-o
# Oo.in.c), With a single standard deviation, or (b) the distance d
between the C and O distributions was independent of the search
condition, but the standard deviation of the C distribution and the
O distribution differed (o # 0o, 0o = 1.0). In both cases, it is
necessary to assume that different criteria for classification are
operative in the two search conditions (Cq.i,.0 # Co.inc)- These
two interpretations require the same number of free parameters.
We prefer the second interpretation because it is structurally less
complex—it allows the sensory coding processes to be identical in
the two search conditions. The theoretical implications for theories
of search asymmetry are considered in the discussion.
Probabilistic serial search models. The probabilistic PSM
provided a very good account of the time course and accuracy of
search. Yet the difficult form of asymmetric visua search is
usually associated with a seria search model (SSM). Many
attention-based search models include a serial component. The
probabilistic SSM instantiates a quantitative formulation of the
time—accuracy profiles. The probabilistic SSM does not provide a
competitive fit to the data from the SAT experiment. Even the
most general form of the probabilistic SSM, which included inde-
pendent parameters for processing speed (v and encoding—RT
offsets t,) and bias for the two forms of asymmetric search (4 P,
21 20, 2ty or 10 parameters) failed to fit the data well; the
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Figure 9. Fit of the probabilistic parallel search model (PSM) to the discrimination data (d') in Figure 8. The
symbols are observed data points, and the smooth curves are best-fitting model functions. Panel layout
corresponds to Figure 8. The PSM gives a good account of the time-course data.

10-parameter mode! yielded r®s of .80 and .85, respectively, for the
d’ data for the 100- and 50-ms displays. This compares very
unfavorably with the more parsimonious parallel model (4 P, 1 T,
1 g, or 6 free parameters [« set at 40]), with r?s of .98 and .98,
respectively, for the d’ data for the 100- and 50-ms displays. The
estimated parameter values for the fit of the probabilistic SSM
exhibited inconsistencies (e.g., for the more difficult O-in-C
searches, estimated time offset t, = 240—250 ms, whereas for the
easier C-in-O searches, estimated time offset t, = 263-277 ms,
with inconsistent time constants s over display conditions). Fi-
nally, these fits visually provided less good fits of the model to
data, as seen in Figure 10. The SSM predicts a slower time course
for larger display conditions, and this is true of the probabilistic
SSM, even if the moderating effect of errors on time course is
incorporated. It is visually evident that the display-size effects on
the time course of visual search are inconsistent with the near
equivalence of tempora dynamics for the different display sizes.

Bayesian serial and parallel search models. A more complex
form of the SSM that incorporated sophisticated guessing was also
developed (see the Appendix) to test the intuition that using
information about the already completed search stages might allow
the SSM to account for the time-course data.** The model we
considered modified the guessing process to incorporate the num-
ber of completed comparisons.

In the originad SSM, the guessing probability—which applies
either before some item is identified as atarget or before all items
are identified as distractors—was identical throughout the search
process. In the Bayesian SSM, the probability of guessing yes at
any given time depends on how many comparisons are complete:
(N—1)

N

P(guess yes) = B , where | is the number of comparisons

completed without (correctly or incorrectly) identifying a display
element as a target. This corresponds to the intuition that the
probability of guessing yes should be lower if 11 of 12 display
elements have been searched without finding a target than if only
1 of 12 display elements have been searched. If theinitial guessing
parameter is 50%, this would correspond to rates of guessing yes
of 46% after 1 of 12 comparisonsis completed and 4% after 11 of
12 are completed.

Although intuition might suggest a moderation of the dynamic
predictions due to sophisticated guessing, in fact the impact on
predicted d’ is very small.*®> The reason is that, athough the
guessing rate might reduce from, say, 50% to 46% &fter the first
comparison is completed, this is equally true for the target-absent
and the target-present cases. These two cases deviate only at the
point where some item is identified as a target. The similarity of
the predictions of the origina and the Bayesian form of the
probabilistic SSM is shown for an example set of parameters (P
= 095, P, = 098, = 0.05 B = 050, for N = 4 or 12) in
Figure 11. The differences between the two models are very small,
as shown by the close identity between the predicted d's for the
Bayesian and the original SSM (Figure 11A) and the nearly
identical predicted time courses (Figure 11B). A similar relation-
ship holds in the parallel model for the same reasons. The simi-
larity of the predictions of the two forms of the probabilistic
paralel search model is shown in Figures 11C and 11D for an

14 Thanks to Jeff Miller and an anonymous reviewer for this suggestion.

15 A process of sophisticated guessing was suggested by reviewers as a
mechanism to allow a serial model to accommodate the very small or null
effects of set size on dynamics of the time-course functions.
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example set of parameters (Pt = 0.95, P, = 0.98, 7 = 0.02, « =
20, B = 0.50, for N = 4 or 12). Due to this close correspondence
for both serial and paralel models, the fitted solutions of the
Bayesian, sophisticated-guessing form of the models and the orig-
inal forms of models are not distinguishable with realistic exper-
imental sample sizes. Indeed, as expected based on this analysis,
model fits for the guessing-augmented models yielded essentially
equivalent parameter estimates and fits.

Discussion

Search asymmetry is one of the major empirica examples of
visual search that has been historically associated with serial
search for the more difficult condition. Y et the probabilistic PSM
provided a very good account of visual search performance in the
absence of eye movements for this case of asymmetric search. A
simple form of the model was sufficient to provide agood fit of the
time-course data. In contrast, a probabilistic SSM, despite the
incorporation of errors and guessing into early time-course predic-
tions, did not provide a satisfactory account of the data. A Bayes-
ian serial model incorporating sophisticated guessing made nearly
identical predictions and so was similarly unable to account for the
time-course data. Both forms of serial model overpredicted slow-
ing due to increases in the display size. We believe that this
rejection of the serial models is quite general. Of course, in the
limit, some form of hybrid serial—parallel process would ultimately
be indiscriminable from a pure parallel process. For example, if the
displays were organized into only two groups, processed one after
the other but with parallel processing within groups, this model
might not make quantitative predictions that would be distinguish-
able from the pure parallel case. The point here is that a pure

parallel mechanism provides an excellent account, and models
with a significant serial component do not.

The two forms of search asymmetry, relatively easy C-in-O
searches and relatively difficult O-in-C searches, exhibited a com-
mon processing time course but different estimated item-
identification accuracies. It was necessary to assume either (a)
different levels of limiting discrimination (d’) for the C-in-O and
O-in-C conditions, which could be achieved by assuming different
distances (d) between the representations for Cs and Os, with equal
variances or (b) identical distances between the representations for
Cs and Os but with unequal variance. Of these two options, we
prefer the latter becauseit is structurally parsimonious—it assumes
that the coding and representations in the two forms of search
asymmetry areidentical and that the different hits and false alarms
in the two conditions reflect only differences in criteria applied to
the same representations. Therefore, we attribute search asymme-
try to less variance in sensory coding of C than of O. Thisanalysis
of visual search asymmetries is consistent with model approaches
that focus on a signal-detection framework and variances of com-
puted feature representations (Rosenholtz, 2001; Rubenstein &
Sagi, 1990).

The effective accuracy of the overall asymmetric search process,
however it is conceptualized, favors the C-in-O searches over the
O-in-C searches. Nonetheless, time courses of search are remark-
ably similar in the two asymmetry conditions (e.g., information
about these displays first becomes available at essentially the same
time, and the availability of new information accrues over essen-
tially the same period of time). In the absence of eye movements,
visual search—even in cases of search asymmetry—reflects
accuracy-limited, not time-limited, processes.
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forms of model is very general.

Experiment 3

Experiment 3 tested the SAT observers in several RT condi-
tions, following the completion of Experiment 2. We tested the
observers in time-unlimited display conditions (standard RT) to
evaluate whether the extensive practice in the SAT task altered
search performance. They were tested in time-limited display
conditions to evaluate the relationship of RT under these condi-
tions with the corresponding results in the SAT task. RT testing in
these observers occurred after participation in the SAT task.

Method

The method for the limited-display conditions was equivalent to that of
Experiment 2, except that the tone cues to respond were eliminated and
display sizes of 4, 8, and 12 were tested. In separate blocks, both
homogeneous- and heterogeneous-orientation conditions were evaluated.
The method for the unlimited-display conditionswasidentical to that of the
limited-display conditions, except that the stimulus remained on until
response. In both cases, observers were instructed to respond as quickly
and accurately as possible. Observers participated in a total of four ses-
sions, yielding a sample size per observer per condition of 80 in each of the
display conditions.

Results

Time-limited display RT data. The RTs and errors for the
time-limited displays, averaged over observers, are shown in Fig-
ure 12 for homogeneous visual search (all Cs with the gap on the
right). Thiswas the search condition tested in the SAT experiment.
For time-limited displays for these practiced observers, the RT and
error functions of display size exhibited relatively flat RT slopes
and relatively higher error rates. An ANOVA of the RT data for

homogeneous searches yielded significant effects of search condi-
tions (OinCvs. CinO), F(1, 5) = 7.93, p < .05; target presence,
F(1,5) = 15.93, p < .01; and display size, F(2, 10) = 6.33,p <
.05. In the time-limited displays, the effect of display size was
larger on error rates (see also McElree & Carrasco, 1999). An
ANOVA of the error data supported these conclusions.

The error rates for these time-limited displays were higher than
the asymptotic error rates in the SAT data. Instead, the mean RTs
and error rates corresponded to performance earlier on the SAT
functions. This can be seen in Figure 7, where the performance
from the RT paradigm is indicated for Display Sizes 4 and 12 for
target-present and target-absent conditions. The relationship be-
tween the RT data and the SAT data for the 50-ms display
conditions is exceptionally close, indicating a close consistency
between performance in the SAT and in the RT paradigm under
theidentical display conditions. For the 100-ms display conditions,
the RT performance is slightly better than would be expected on
the basis of the SAT data. This relatively small deviation almost
certainly reflects improved performance due to practice. For the
SAT data, a short initial practice phase was carried out in 150-ms
displays, followed by collection of the full data set for 100-ms
displays and then for 50-ms displays. Finally, data from the prac-
ticed SAT observers were collected in the RT paradigms. Hence,
the 50-ms display conditions in the SAT and the RT paradigm
were at adjacent and perhaps at asymptotic levels of practicein this
search task, whereas the 100-ms display data were collected at an
earlier stage of practice. This remarkable consistency between the
RT data and the SAT data from comparable display conditions
strongly suggests that the two paradigms are measuring the same
processes.
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The RTs and errors for the time-limited displays for heteroge-
neous displays are shown in Figure 13. For the 100-ms displays,
the slopes of RT as a function of display size were longer for
O-in-C searches (8 ms and 3 ms per item) than for C-in-O searches
(4 msand 5 ms per item). The accuracy levels for the three display
sizes were .88, .83, and .80. For the 50-ms displays, the slopes of
RT as a function of display size were similar and longer for the
O-in-C searches (8 ms and 3 ms per item) than the C-in-O searches
(3 msand 3 ms per item). The accuracy levels for the three display
sizes were .85, .81, and .77.

Unlimited-display RT data. The RTs and errors for the
unlimited-duration, free-viewing condition, averaged over observ-
ers, are shown in Figure 14. An ANOVA of the heterogeneous-
orientation RT data yielded significant effects of the type of search
(C-in-O vs. O-in-C), F(1, 5) = 17.88, p < .01; target presence,
F(1,5) = 12.16, p < .01; display size, F(2, 10) = 12.14, p < .01,
and all interactions (all ps < .01). An analysis of the accuracy data
exhibited small but significant differences in proportion of errors
for target presence (0.97 vs. 0.93), F(1, 5) = 12.88, p < .02, and
Search Type X Target Presence, F(1, 5) = 8.63, p < .05, and
Target Presence X Display Size, F(2, 10) = 4.38, p < .01,
interactions. The RT slopes of the O-in-C searches were larger (28
ms and 73 ms, respectively, for target present and target absent)
than for the C-in-O searches (9 ms and 21 ms, respectively, for
target present and target absent). An ANOVA of the
homogeneous-orientation (C-gap right) RT datayielded significant
effects of the type of search (easy vs. hard), F(1, 5) = 847, p <
.05; target presence, F(1, 5) = 12.01, p < .05; display size, F(2,
10) = 13.36, p < .01, and several interactions. An analysis of the
accuracy data exhibited a significant Target Presence X Display

Size interaction F(2, 10) = 4.94, p < .05. No other effects were
significant. The RT slopes of the O-in-C searches were larger (16
ms and 34 ms, respectively, for target present and target absent)
than for the C-in-O searches (6 ms and 21 ms, respectively, for
target present and target absent).

Discussion

For the very well-practiced SAT observers, the pattern of
mean RTs and errors in the unlimited-display condition, in
which eye movements are not controlled, was essentially equiv-
alent to the pattern for unpracticed observers, although the RT
and RT slopes were shorter and the error rates were somewhat
lower. Although there is some evidence that the extended
practice improved performance somewhat, there is no evidence
that it produced a change in the pattern of visual search. Instead,
it appears that the unlimited-display conditions differ from the
limited-display conditions primarily in the opportunity to con-
tinue with a sequence of additional episodes of information
acquisition—very likely associated with the serial deployment
of eye fixation in many cases.

General Discussion

Empirical Summary

Experiment 1 replicated standard RT results for asymmetric
visual search in the annular displaysthat controlled for eccentricity
and for lateral masking—search for aC in Osismore efficient than
search for an O in Cs. The substantial effect of display size on RT
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and accuracy in these searches is the pattern of performance
typical of asymmetric search and is widely interpreted as a reflec-
tion of serial search processes.

Experiment 2 evaluated the time course of visual search for
time-limited (100- or 50-ms) display conditions using speed—
accuracy methods. Time-limited displays have been used exten-
sively in the testing of signal-detection models of visual search, in
which search accuracy is the measure of performance. We ex-
tended this analysis to the time course of visual search. The
asymptotic accuracy of visual search was higher for C-in-O
searches than for O-in-C searches, and higher for Display Size 4
than Display Size 12 conditions. In this sense, difficult search was
accuracy limited. However, the time course of processing was
independent of display size, a result generally consistent with
parallel models of visual search. There was no evidence of time-
limited processing. Probabilistic serial and parallel processing
models, as well as Bayesian sophisticated-guessing variants of
these models, were tested by quantitative model fitting (discussed
below). Experiment 3 measured the RTs and accuracies for C-in-O
and O-in-C searches in time-limited and time-unlimited displays
for the highly practiced observers who had participated in Exper-
iment 2. The accuracies and RTs for the time-unlimited displays
were consistent with, though somewhat more efficient than, those
of the unpracticed observers of Experiment 1. Accuracies and RTs
for the time-limited displays were in close registration with the
corresponding conditions in the time—accuracy data from the SAT
experiment.

Probabilistic Parallel and Serial Models

Probabilistic forms of serial and parallel search models, as well
as sophisticated-guessing variants, were developed in this article.
These models were fit to the full time-course data in order to
provide a quantitative test of visual search processes. The models
incorporated errors in the identification of display items as targets
or distractors. The probabilistic PSM provided an explicit quanti-
tative form of parallel model based in signal-detection principles.
This model provided a very good account of the time-course data.
The probabilistic SSM predicted smaller effects of display size on
the rising portion of the time course than the simple serial model
but nonetheless failed to provide a good account of the time-course
data for search asymmetry.

The elaborated probabilistic parallel model provided a very
good account of both the time course and the asymptotic accuracy
of visual search for both the C-in-O and the O-in-C conditions. The
50-ms and the 100-ms display conditions, which yielded indepen-
dent replications of the estimated parameters, exhibited consistent
fits and closely similar parameter estimates. In contrast with the
success of the elaborated parallel model, the elaborated serial
model was not able to provide an adequate fit to the time—accuracy
data. Even in the most overelaborated form, the data fits were
unacceptable, and the parameter estimates exhibited internal in-
consistencies. The analysis of the time course of visua search
asymmetry provided strong evidence in favor of the operation of a
paralel comparison process and against a serial comparison pro-
cess in visual search in time-limited displays.



22 DOSHER, HAN, AND LU

A
Heterogeneous
1,200 g P
7/
7
1,000 s
@ ;1/
E y
— 800 s _©
a v P
s L@
400
0 5 10 15
Display size
C Homogeneous
1,200
1,000
@
E
E 800 A
=
600 - - =
400
0 5 10 15
Display size

B o.2
Heterogeneous
= 0.20
[s}
£
2
s 0.15
e .o
S 0.10 -
W @
0.05 B:/a\ﬂ
B- -
- —
o =]
0 5 10 15
Display size
0.2
D Homogeneous
= 0.20
k<]
B
5— 0.15
L
§ 0.10 0
Iy e
0.05 g——eg" "
?TT:E\E
0
0 5 10 15
Display size

Figure 14. Average response times (RTs) and errors as a function of display size for unlimited-time displays
with free viewing in Experiment 3, with observers practiced in the speed—accuracy trade-off experiment. A: RT
for the heterogeneous (C-gap right, down, left, or up) condition. B: Errors for the heterogeneous condition. C:
RT for homogeneous (C-gap right) condition. D: Errors for the homogeneous condition.

These observations are consistent with earlier studies of visual
search accuracy in time-limited displays (Palmer, 1994, 1995;
Palmer et a., 1993, 2000). Those studies focused on statistical-
uncertainty models for search accuracy, in which display size
increases corresponded to increased possibilities for false alarms.
The asymptotic forms of both our probabilistic serial and proba-
bilistic parallel models are equivalent to the statistical-uncertainty
models. Palmer and colleagues found that the display-size effects
on untimed accuracy were consistent with simple statistical-
uncertainty losses for many primary visua features such as line
length, brightness, or orientation. Our observations go beyond
those analyses of search accuracy to provide a systematic evalua-
tion of the temporal properties of search. The untimed accuracy
results are compatible with unlimited-capacity search processes
coupled with either a parallel or a serial processing architecture—
our results are consistent with the former.

McElree and Carrasco (1999) documented that the time course
of conjunction search was slowed for larger display sizesyet not to
the extent predicted by a simple form of SSM. They concluded,
without fully specifying the parallel models, that both feature and
conjunction searches reflect parallel processes of visual search but
that conjunction searches were substantially slower for larger
display sizes, indicating load dependence. In this article, we ap-
plied probabilistic models of parallel and seria search, differing
only in the scheduling of comparisons, to asymmetric visua
search, a theoretically interesting but structurally simple form of
search. Dosher et a. (1998, 2003) applied the probabilistic parallel
and serial models to homogeneous and heterogeneous searches for
oriented line targets and found similar evidence for a pure parallel
search. The models provided adequate first-order approximations

to heterogeneous search. Applications to conjunction search may
be intrinsically more complex because of the importance of subset
evaluation processes (Dosher, 1998; Egeth et al., 1984) or, ater-
natively, substantial differences in processing speed or accuracy
for different distractor subsets (Dosher, 1998). In the case of the
McElree and Carrasco (1999) data, however, the probabilistic
parallel search model provides a very good account of the results.
Further work would be required to determine whether this is a
general result for conjunction searches.

Other Models of Visual Search

The probabilistic parallel search model was chosen in such a
way that the probabilistic parallel and serial models differed only
in the scheduling of item evaluations but were otherwise identical.
A range of other models based in the same principles and decision
rules as the probabilistic parallel model, such as diffusion models
(Ratcliff, 1978), should exhibit similar properties. Finaly, it is
possible that other forms of parallel models might be modified and
elaborated to account for these results. Humphreys and Muller
(1993) postulated that groups of like distractors are rejected in
paralel. Since distractors are identical in both forms of asymmetric
visual search, it is possible that this model might predict a single-
pass parallel rejection for both, but then it should also predict flat
RT and accuracy functions of display size in the RT venues.

In contrast, many serial models make predictions about display
size effects that are as extreme or more extreme than those of the
probabilistic serial model. Models that include a serial deployment
of covert attention during visua search include the feature inte-
gration model (Treisman, 1988; Treisman & Gelade, 1980; Treis-
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man & Gormican, 1988). Standard feature integration theory, in
which all item comparisons occur in series, appears to be incom-
patible with the current results. Selective search models (Dosher,
1998; Egeth et a., 1984) that assume serial deployment of covert
attention over a selected subset of items would make similar
predictions, scaled to the number of itemsin the selected subset. In
any event, selective search models have no obvious applicability to
the asymmetric visua search studied here. Other models, such as
the guided search model (Cave & Wolfe, 1990; Wolfe, 1994),
account for the positive RT dopes in free-viewing paradigms by
serial deployment of covert attention to items selected through
paralel preprocessing of al items. Again, there is no basis in the
current asymmetric visual search for distinguishing between dis-
tractors; only a form of the model that defaulted to pure parallel
processing would be compatible with the time-course data.

Overall, then, we believe that many of these model approaches
are inconsistent with our data. In afew cases, it is possible that an
elaborated or modified form of the model might account for these
data, but those elaborations would constitute significant model
modifications. We defer these modifications to the origina
authors.

Finally, contrary to intuition, sophisticated guessing does not
contribute significantly to the dynamic properties of visual search.
While we cannot rule out the deployment of complex Bayesian
sophisticated guessing on the basis of partial completion of the
search process, it is clear that sophisticated guessing, if it occurs,
has little impact on the time course (d’ vs. processing time) of
visual-search performance. This is because visual search is con-
ceived as a process that self-terminates upon finding a target, and
so completed comparison stages have an exactly equal effect in
target-present and target-absent displays until a target is found or
a distractor is misidentified.

Visual Search Asymmetry

The Probabilistic Parallel Model provided estimates of the iden-
tification accuracy for individua C and O stimuli in the C-in-O
and O-in-C visual searches. The model calculated overall accuracy
and time course from these (estimated) accuracies of identification
of individual tokens. Identification of Os and Cs, as estimated by
the model, depended on the search context. The performance
favored C-in-O search displays over O-in-C search displays. These
results can be remapped into a signal-detection framework in
which the four identification probabilities (O and C in C-in-O
searches and O and C in O-in-C searches) arise from strength
distributions for O and C with a separation (d), different variances,
and different criteria in the two search environments. Two such
models were compatible with the four estimated identification
probabilities: Model 1, in which C and O are separated by a
smaller d in the context of the O-in-C search than in the context of
the C-in-O search, and the strength distributions are of equal
variance; and Model 2, in which C and O are separated by an equal
d in the two search contexts, but the standard deviation is smaller
for Cs than for Os. C is the preferred token. Although both
interpretations involve the same number of free parameters in the
signal-detection model, we believe that Model 2 offers a more
structurally parsimonious account. It is parsimonious in the sense
that the underlying coded representations of C and O stimuli
remain the same in the two search contexts, and only the criteria

applied to the space is altered. In this form, the two stimuli differ
by virtue of their relative variability in coding.

Overall, then, the model of limiting accuraciesis consistent with
the signal-detection framework, and the relative difficulties of
conditions depend on the variance structure of the coded repre-
sentations of individual stimuli. The C stimuli are coded with less
variability than O stimuli, which confers (or reflects) the advan-
tages of detecting Cs. Our theoretical view of the limiting accuracy
structure is directly related to signal-detection and variance for-
mulations of search asymmetry promoted by several previous
groups. For example, Rubenstein and Sagi (1990) proposed a
related model of asymmetry in texture segregation that was more
specifically grounded in early visual system analysis by Gabor
channel operators, but ultimately they argued that asymmetries in
texture segregation arose from imbalances in coded variances of
texture elements. Our view is also somewhat related to more recent
proposals by Rosenholtz (2001) that emphasize the variability and
relationships of coded representations of the stimuli and induced
positions of criterion boundaries.

In the temporal domain, the conclusions of this article are quite
distinct from prior approaches. The pattern of resultsin the current
studies was generally consistent with the classic reports of asym-
metric search in the visual search literature (Treisman & Gormi-
can, 1988), which are typically associated with serial-processing
architectures for the more difficult form of asymmetric search.
Instead of concluding that the search asymmetries reflect seria
scrutiny of the search displays for nonpreferred target tokens, we
conclude that the form and tempora properties of the search
performance revealed by measurements of time course were well
accounted for by a probabilistic PSM with closely equivalent
temporal parameters and common model structure, allowing only
variations in identification probabilities. Thus, in the tempora
domain, our results provide strong evidence for parallel processes
and fully overlapping time course. This contrasts with the classic
explanations in terms of a contrast between paralel or near-
parallel processing of preattentive features and serial processing of
the difficult form of the search asymmetry. In this sense, our
results contradict a common assumption of serial processes in
visual search.

RT Data and the Role of Eye Movements in Visual Search

The RT data were closely consistent with the time-course data.
For time-limited displays, condition differences were primarily
expressed in different accuracies, with modest RT differences. In
fact, the combined RT and error rates (RT—d’ pairs) were close
to—though not precisely on—the corresponding time—accuracy
curvesfor time-limited displays. In contrast, RTsto unlimited-time
displays showed substantial sensitivity to display size and target
presence and absence, whereas here the differences in error rates
were |ess than those found with time-limited displays. This pattern
of RTs and errors in time-limited and time-unlimited displays is
typical for these conditions (Dosher et al., 1998; McElree &
Carrasco, 1999).

A number of facts suggest that eye movements as well as covert
attention processes may play important roles in visua search in
free-viewing paradigms. The substantial differences between time-
limited and time-unlimited displays in both accuracy and RTs
suggest a further analysis of the role of eye movements in visual
search. The accuracy limitations in time-limited displays suggest
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that information may not be fully extracted from brief displays,
despite persistence of those displays in visual memory. Search
within this single episode of information acquisition is parallel but
accuracy limited, as documented in the analysis of the speed—
accuracy data. One might study improvements in visual-search
accuracy under conditions of continued fixation to further evaluate
search processes associated with covert attention. Of course, overt
movements of the eyes in visual search (Geiser & Chou, 1995;
Motter & Belky, 1998) are intrinsically serial.

Conclusions

In this example of asymmetric visual search (C in Os or O in
Cs), covert attention was deployed in parallel over the itemsin the
visual field. Eye movements were precluded by brief displays, and
the full time course of processing was measured by SAT methods.
Information processing without eye movements is accuracy lim-
ited, not processing-time limited in nature. In standard RT studies
of visual search with time-limited displays, conditions differed in
error rates, with more modest differencesin mean RT asafunction
of display size. In standard RT experiments with unlimited-
duration displays, display-size effects on RT were larger and
effects on accuracy much smaller. We believe that attention pro-
cesses within each eye fixation operate in parallel, whereas serid
eye-movement processes are used to overcome limitations in vi-
sual coding. Search asymmetry results from a signal-detection
model with different variances in coding for different features or
stimuli. There are three lines that future research might take: (a)
further developments and applications of the models to more
complex visual-search designs, (b) measurements that evaluate the
applicability of parallel processing models for covert attention in
time-unlimited processing with the fixated eye, and (c) further
evaluations of the relation of covert attention and subsequent
information acquisition with the eye free to move in visual search.
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Appendix

“Bayesian” Sophisticated-Guessing Models

The probabilistic parallel search model (PSM) and the probabilistic
serial search model (SSM) were extended to incorporate sophisticated
guessing into the search models. In these models, partial information
about the completed comparison operations is incorporated into the
guessing processes for the visual search models. Categorizing a display
element as a target, correctly or in error, terminates the process by
moving the observer into a positive information state, leading to a yes
response. By definition, then, only prior comparisons ending, correctly
or in error, in a “distractor” identification lead to sophisticated guess-
ing. The Bayesian sophisticated-guessing models are straightforward
elaborations of the simpler PSM or SSM. The impact of the modified
guessing is nearly identical for target-present and target-absent displays
until quite late in the process (when target-present trials are likely to
have completed), and these models have little effect in reducing the
impact of serial processing early in the time course of processing. In
consequence, the quantitative fits of the guessing-elaborated and the
standard probabilistic models to time-course (d’) data are very similar
to one another.

The equations for the sophisticated-guessing model appear below. In
these equations, al of the guessing is integrated into each equation part
(unlike those for the probabilistic serial and parallel modelsin the body
of the article, in which a common guessing component was imple-
mented separately). As in the previous developments, cases and prob-
abilities are counted for latent processes (i.e., those that would have
gone to a correct or incorrect classification if they had gone to com-
pletion), and then the probabilities of completing particular cases first
are factored in for each.

Bayesian Serial Model: Target Present
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For target-present displays|eading to ayes response, the equation is broken
into four parts: (&) cases in which m — 1 distractors are correctly identified
before the target is correctly identified; (b) casesin which k distractors are
correctly identified before a distractor is identified in error as a target, al
before the target is processed; (c) casesin which m + k — 1 distractors are
correctly identified, and the target is incorrectly identified as a distractor
before a distractor is incorrectly classified as a target; (d) al N — 1
distractors are correctly classified, and the target isincorrectly classified as
adistractor. The probability of responding no is simply the converse of the
probability of responding yes. The sequence of serial comparison opera-
tions continues until a target is found (correctly or in error) or until al
comparisons are completed without finding a target. Bayesian, or sophis-
ticated, guessing reduces the probability of saying “yes’ every time a
comparison is completed without finding atarget. These al take aform like
the following:

m—1 (N—l)
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where (G(t|r, 1) — G(t|, | + 1)) is the probability that | but not yet | + 1
comparisons have completed. This counts al comparison completions in
succession. The term

(N=1
N

moves guessing from 3 when no comparisons are completed toward (N —
N)/N = 0 when all comparisons are completed without finding atarget. The
response rates, of course, go immediately to 1.0 when atarget is (correctly
or incorrectly) identified.

Bayesian Serial Model: Target Absent

(N=1)

N m-1
PYETA) = >, pi (L - p:»[@(th, m+ > B G(t|r, 1)

m=1 1=0

N-1

- G(i|r, | + 1)] + pg[ E B (N,\] D (G|, I) = G(t|7, | + 1))

1=0

pYTA) = 1 — p"({TA).

For target-absent displays leading to a yes response, the equation is broken
into two parts: (a) casesin which m — 1 distractors are correctly identified
before a distractor is misidentified as a target and (b) cases in which all
distractors are ultimately correctly identified and the term calculates the
probabilities of guessing.

Bayesian Parallel Model: Target Present

In the parallel model, again, performance is computed based on the
latent outcomes of the identifications of all items in the display. For each
part, the number and probability of items identified (correctly or incor-
rectly) as targets is calculated, and the time course depends on a race
between each of these processes, which determines the first time at which
a “target” is identified:
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N-1

(N=1)!
ZEWPTPS L~ py)™ - -

m=0

pYe(tTP)

(1-(1-G{r ap™h

N-m—1

SUON-D (N 1
b B ey (G, @)@ - G, )

1=0

N-1

(N—1)! . "
+ zm(l— pops ™ML — pp)™ - -

(1-@1-G(trn a)

N-m
S (N=1)  (N-m! (G(tr, a)'(1 = G(t|7, @)™

N II(N=m-=1)!

N—1) N!

+ (1 popt 2 p i (Gtm @)1= Gltr, @)™

PNo(t{TP) = 1 — p"*(t|TP).

For target-present displays |eading to ayes response, the equation is broken
into three parts: (8) cases in which the target and m of N — 1 distractors
would al (latently) be identified (or misidentified) as atarget, and the time
course represents a race between m + 1 parallel identification processes;
(b) cases in which the m distractors would (latently) be misidentified as
targets, the target would be missed, and the time course represents a race
between m parallel identification processes; (c) al N — 1 distractors are
correctly classified and the target is missed, and a race between N identi-
fications determines the guessing factors.

Asin the serial model, the Bayesian or sophisticated-guessing correction
depends on the number of identifications completed prior to finding a
target,

(N-1)
By

where N is the total number of items and | is the number of identification
processes that have been completed. These guessing components all take a
form like

_ N “
E B( N )Il(K i (G(7, D' — G, | + 1K),

1=0

where K is the number of parallel processes (latent target identifications)
racing for the first target identification, | is the number of completed
processes,

K!
K =1

calculates the probabilities of these cases, and (G(t|r, I)'(1 — G(t|r, | +
1)K~1)) isthe probability that | of K parallel processes have completed. The
term

(N=1
N

moves guessing from B when no comparisons are completed towards (N —
N)/N = 0.

Bayesian Parallel Model: Target Absent

N

N!
I TA) = MmN =l P "(1 — po)™ - l 1-(1-G(tr, &)™
m=0

N—m N— I N
> B( N )I'(l\(l m) p (Gt @)1 = G(t/r, @)™ '1

PNO(t{ TA) = 1 — p"*S(t|TA).

For target-absent displays leading to a yes response, performance depends
on arace between m distractors that are (latently) identified incorrectly as
atarget.
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