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Abstract

We applied the external noise plus attention paradigm to study attention mechanisms involved in concurrent first-order and
second-order motion perception at two spatial locations. Cued to attend to one of the locations, the observer was instructed to
independently judge direction of motion of either first-order (Experiment 1) or second-order (Experiment 2) motion stimuli at
both locations in every trial. Across trials, systematically controlled amounts of external noise were added to the motion displays.
We measured motion threshold at three performance criteria in every attention x external noise condition. We find that observers
could, without any loss, simultaneously compute first-order motion direction at two widely separated spatial locations across a
broad range of external noise conditions. However, considerable loss occurred at the unattended location in processing
second-order motion direction at two separated spatial locations. We conclude that, under the conditions investigated in the
current study, (1) in first-order motion perception, the visual system could simultaneously process motion direction at two widely
separated locations without any capacity limitation; (2) in second-order motion perception, attending to a spatial location
enhances stimulus contrast at that location by a factor of about 1.37 (or equivalently, reduces the internal additive noise by a
factor of about 0.73). © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Simultaneous computation of visual motion at multi-
ple locations is crucial for tasks such as motion parallax
(Helmholtz, 1911), kinetic depth effects (Wallach &
O’Connell, 1953), structure from motion (Ullman,
1979), and control of locomotion (Gibson, 1950, 1958).
Recently, it has been proposed that visual motion per-
ception is served by three parallel, independent compu-
tational systems (Lu & Sperling, 1995a, 1996, 1999a;
Sperling & Lu, 1998): a first-order system, a second-
order system and a third-order system, each computing
motion from some particular properties of moving ob-
jects (see Section 1.1 for a brief review). Given its
importance, it is natural to ask questions concerning
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simultaneous motion processing at multiple spatial lo-
cations in the proposed systems: Is it possible? What
are the limitations? How is each system limited? The
questions can be rephrased in the language of spatial
attention: Can we attend to motion at several locations
simultaneously? What are the attention mechanisms
involved in multi-location motion perception?

In this study, we are primarily concerned with atten-
tion mechanisms involved in concurrent processing of
first-order or second-order motion at multiple loca-
tions. Empirically, we study attention limitations in
two-location first-order and second-order motion pro-
cessing across a broad range of external noise condi-
tions. The external noise manipulation enables us to
identify the attention mechanisms underlying the ob-
served attentional phenomena. We start with a brief
review of the literature, distinguishing types of motion
perception (Section 1.1) and of prior studies in motion
and attention (Section 1.2); We then consider the theo-
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retical development relating the external noise
paradigm, and corresponding mechanisms of attention
(Section 2).

1.1. Three systems theory of motion perception

Recent psychophysical results have led to a three-sys-
tem functional architecture of human visual motion
perception (Lu & Sperling, 1995a, 1996, 1999a; Sperling
& Lu, 1998). The first-order system extracts motion
from moving luminance modulation using a primitive
motion-energy (or equivalently, Reichardt detector) al-
gorithm (Reichardt, 1957; Watson & Ahumada, 1983;
van Santen & Sperling, 1984; Adelson & Bergen, 1985).
The second-order system (Cavanagh & Mather, 1989;
Chubb & Sperling, 1989) can extract motion from
moving stimuli in which the expected luminance is the
same everywhere but some features (i.e. contrast, orien-
tation, and/or spatial frequency) deviate from the back-
ground. It employs a texture-grabber (spatiotemporal
linear filtering plus fullwave rectification, see Chubb &
Sperling, 1989) to compute the amount of features prior
to a primitive motion energy algorithm (Werkhoven,
Sperling & Chubb, 1993; Lu & Sperling, 1995a, 1999a;
Sperling & Lu, 1998). The third-order system detects
movement of feature salience, that is, changes in loca-
tion of areas marked as ‘salient’ (Lu & Sperling, 1995b;
Blaser, Sperling & Lu, 1999). It computes motion from
a dynamic salience map, i.e. the locations of the salient
features as a function of time.

1.2. Attention and motion perception

Attention affects motion perception in many differ-
ent ways. In this section, we briefly review the literature
in three subsections: Section 1.2.1, attention in third-or-
der motion perception; Section 1.2.2, attention effects
at multiple locations; and Section 1.2.3, other attention
effects on motion perception. Section 1.2.3 is only
indirectly relevant for the current study. It is included
for completeness.

1.2.1. Attention in third-order motion perception

Much has been learned about attention mechanisms
involved in third-order motion processing (Cavanagh,
1992; Lu & Sperling, 1995b; Ho, 1998; Blaser et al.,
1999). Cavanagh (1992) suggested that certain third-or-
der motion is based on active attentional tracking of
the relevant stimulus features. Lu and Sperling (1995b)
demonstrated that the dynamic salience map, from
which third-order motion is computed, is jointly deter-
mined by top-down attentional processes and by auto-
matic bottom-up processes. Blaser et al. (1999)
measured the equivalent amplification of the magnitude
of a stimulus feature when the feature is attended in
third-order motion. Their study suggests that attention
enhances the salience of the attended feature.

Given that third-order motion is intrinsically suscep-
tible to attention and given the current active research
on that topic, we restrict our discussion in this article to
the effect of attention on first- and second-order motion
perception at multiple locations.

1.2.2. Attention effects on multi-location first- or
second-order motion

Dosher, Landy and Sperling (1989) found that, while
the output of first-order motion detectors is the primary
input for kinetic depth effects, second-order motion
could only support limited, non-robust kinetic depth
effects with low spatial resolution (see also Landy,
Dosher, Sperling & Perkins, 1991). They hypothesized
that this reflected limits on the ability to evaluate
second-order motion simultaneously at multiple loca-
tions. Studying motion segmentation (finding the patch
with a different motion direction) at multiple spatial
locations, these authors (Dosher et al., 1989) found
that, while the observers could simultaneously attend to
first-order motion at seven different spatial locations,
they could at most simultaneously attend to second-or-
der motion at two separated spatial locations.

Using a visual search paradigm, Horowitz and Treis-
man (1994) concluded that short-range (or first-order,
in our terminology) motion at multiple locations is
computed in parallel; long-range (or second-order, in
our terminology) motion at multiple locations is com-
puted in serial. Consistent with this point of view,
Verghese and Stone (1995) found that the set-size effect
(threshold increases as a function of the number of
distractors) in searching for a windowed (first-order)
luminance sinewave grating that moves faster than the
distractors can be completely accounted for by a stimu-
lus uncertainty effect (Shaw, 1978; Palmer, Ames &
Lindsey, 1993), implying that there exists no-capacity
limitation in processing first-order motion at multiple
locations (Shaw, 1980).

The studies reviewed above all utilized compound
visual search paradigms (Sperling & Dosher, 1986),
involving some intrinsic structural stimulus uncertainty
effects (Shaw, 1980; Sperling & Dosher, 1986; Palmer et
al., 1993). Interpretation of results from the compound
tasks requires mathematical modeling of structural un-
certainty. Therefore it is somewhat more difficult to
draw definitive conclusions from those studies. In con-
trast, concurrent tasks in which each task has its own
response may eliminate structural uncertainty.

Using a concurrent dual task paradigm, Ho (1998)
found that observers could not simultaneously judge
motion direction from two second-order motion stim-
uli, one at fovea, the other at peripheral vision, though
they could perform a rapid serial visual presentation
(RSVP) letter identification task at fovea and a second-
order motion direction discrimination task in periphery
simultaneously. She also found that observers can not
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simultaneously attend to a peripheral third-order mo-
tion direction discrimination and a foveal RSVP letter
identification task.

1.2.3. Other attention effects on motion perception
Many other attention effects on motion perception
have been observed. For example, it is well known that
attention can modulate the perceptual dominance in
ambiguous motion displays (von Gruenau, Bertone &
Pakneshan, 1998) and even selectively switch on-and-
off motion aftereffects from competing motion direc-
tions (Chaudhuri, 1990; Shulman, 1993; Lankheet &
Verstraten, 1995). In a dual task paradigm involving a
linguistic task and a movement task, Rees, Frith and
Lavie (1997) showed that the processing load in a
linguistic task affected both the motion-related activity
level in cortical area VS5 as recorded from fMRI and the
magnitude of motion after-effect produced by the mov-
ing stimulus. Sekuler and Ball (1977), Ball and Sekuler
(1980) found that both the threshold and the response
time for detecting a moving target is significantly re-
duced if the direction of movement was known to the
observer ahead of the time. Ball and Sekuler (1980)
concluded that, in detecting moving targets, observer
can only monitor a single motion mechanism which is
tuned to the mean of the expected directions, despite
the existence of motion mechanisms tuned to various
directions in the visual system'. While these and many
other attention effects on single location motion percep-
tion are very interesting, we chose to investigate the
mechanisms of attention involved in multi-location
first-order and second-order motion perception.

1.3. Mechanisms of attention

Lu and Dosher (1998a) proposed a formal perceptual
template model (PTM) and an external noise plus at-
tention paradigm to test attention mechanisms. Focus-
ing on fundamental signal and noise relations in
perceptual processes, the PTM model generates mathe-
matical predictions for three different attention mecha-
nisms: (1) stimulus enhancement or internal additive
noise reduction — attending enhances the strength of
the attended stimulus or reduces internal additive noise
— 1is characterized by a threshold difference between
attentional conditions at low, but not high levels of
external noise; (2) external noise exclusion — attention
differentially excludes external noise — is characterized
by threshold divergence between attentional conditions
at high, but not low levels of external noise; and (3)
internal multiplicative noise reduction — attending re-

' On the other hand, it is not clear that the computation involved
in motion detection is the same as motion direction discrimination
(Ball, Sekuler & Machamar, 1983), the task investigated in the
current study.

duces multiplicative internal noise — is characterized
by threshold divergence between attentional conditions
at both low and high levels of external noise. Proce-
dures have also been developed to distinguish mixtures
of mechanisms (Dosher & Lu, 1998, 1999a; Lu &
Dosher, 1999).

In this article, we first briefly describe a noisy percep-
tual template model (PTM) of a human observer. We
then introduce the external noise plus attention
paradigm and summarize mathematical predictions for
the performance of the model under each of the three
attention mechanisms. Finally, we apply the general
paradigm to study attention mechanisms in location-
cued first-order and second-order motion direction
identification tasks at multi-locations. Thus, empiri-
cally, we extend previous research on attentional limita-
tions in first- and second-order motion perception to
high external noise conditions; Theoretically, we clas-
sify the mechanism of attention involved in processing
multi-location first-order and second-order motion us-
ing the PTM model.

2. The external noise plus attention paradigm

In this section, we briefly describe the PTM, the
external noise method used to characterize the parame-
ters of a PTM, and the signature performance patterns
of the PTM under three different attention mechanisms.
The relevant mathematical details may be found in
Appendix A.

2.1. The perceptual template model (PTM)

A model of the human observer is necessary in order
to make precise mathematical predictions on the effect
of various attention mechanisms on human perfor-
mance. At the overall system level, the PTM (Lu &
Dosher, 1998a, 1999) has been demonstrated to be
capable of characterizing human behavior in signal
detection and identification. Elaborating the notion of
equivalent internal noise (Barlow, 1956; Nagaraja, 1964;
Burgess, Wagner, Jennings & Barlow, 1981; Pelli, 1981;
Ahumada & Watson, 1985), a PTM (Fig. 1a) consists
of five components: (1) a perceptual template; (2) a
nonlinear transducer function, ||-||*; (3) an independent
multiplicative Gaussian internal noise with mean 0 and
variance proportional (with a factor of N2 ) to the
total energy in the stimulus after the nonlinear trans-
ducer stage; (4) an independent additive Gaussian inter-
nal noise source with mean 0 and variance N2,; and (5)
a decision process, which, depending on the particular
task, predicts human performance based on the distri-
butions of the signal and the noise at its input.
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2.2. The equivalent input noise method

A PTM can be completely specified using ‘the equiv-
alent input noise’ method originally developed in elec-
trical engineering to characterize noisy amplifiers
(North, 1942; Friis, 1944; Mumford & Schelbe, 1968).
The method systematically manipulates the amount of
external noise added to the signal stimulus and observes
how threshold — signal stimulus energy required for
an observer to maintain a given performance level —
depends on the amount of external noise (Barlow, 1956;
Nagaraja, 1964; Burgess et al., 1981; Pelli, 1981; Ahu-
mada & Watson, 1985). Typically, a TVC (log
Threshold ¢, versus log external noise Contrast N)
function (Blakemore & Campbell, 1969) is obtained.

Fig. 1b plots sample TVC functions arising from the
PTM model at three performance criterion levels (d' =
1, 1.41, 2.0). The set of curves have the following
properties: (1) When the external noise N, is very
small, threshold signal contrast ¢, does not vary with
the amount of external noise. (2) When the external
noise N, is very large, log(c,) increases as a linear
function of log external noise. (3) There is a smooth
transition when external noise is comparable to internal
noise.

Application of a PTM model to a particular percep-
tual task normally involves measuring threshold versus
external noise functions and then fitting the data with
the theoretical predictions. In fact, Lu and Dosher
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Fig. 1. (a) A noisy perceptual template model with five major
components: (1) a perceptual template; (2) non-linear transducer
function; (3) a multiplicative internal noise source, N,.; (4) an
additive internal noise source, N,44; and (5) a decision process. The
triangle denotes an amplifier which multiplies its two inputs to
produce an output. (b) Threshold versus external noise function for a
particular perceptual template model (N,,,, = 0.2, N,qq = 0.0039, f =
4.0, y=2.0) at three d’ levels (d' = 1.0, 1.4, 2.0).

(1999) showed that a complete specification of the PTM
model requires measuring a single TVC function at
three different d' levels®.

2.3. Signature patterns for attention mechanisms

Within the framework of a PTM model, attention
may have impacts in three different ways: (1) Stimulus
enhancement — stimulus (both signal and external
noise) strength at the attended location is multiplied by
an amplification factor greater than 1. This is mathe-
matically equivalent to reducing internal additive noise
by a factor 4, < 1.0 (Lu & Dosher, 1998a). (2) External
noise exclusion — a narrowing of the template match-
ing filter would differentially exclude some amount of
external noise. This is modeled by multiplying the
amount of external noise at attended locations by a
factor A< 1.0. (3) Internal noise reduction — while
internal additive noise reduction is equivalent to stimu-
lus enhancement, multiplicative internal noise reduction
can be characterized by reducing N, by a factor
A, < 1.0.

Fig. 2 depicts the attention mechanisms and their
signature effects on TVC functions for a sample PTM
model. Stimulus enhancement (or equivalent internal
additive noise reduction) reduces contrast threshold
only at low external noise levels at attended locations
(Fig. 2a and b). External noise exclusion reduces con-
trast threshold only at high external noise levels (Fig. 2¢
and d). Multiplicative internal noise reduction has ef-
fects over the whole range of external noise levels (Fig.
2e and f).

In applying the external noise plus attention
paradigm, TVC functions are measured at both at-
tended and unattended locations. In simple cases, direct
comparison of the measured TVC functions and the
signature patterns will reveal the attention mechanism
in operation. In cases where the measured TVC func-
tions don’t match one of the signature patterns, mea-
surement of TVC functions at multiple performance
criteria may resolve mixtures of attention mechanisms
(Dosher & Lu, 1999a,b; Lu & Dosher, 1999). We apply
the external noise plus attention paradigm in the next
section.

3. General methods

A concurrent paradigm was used to study attention
mechanisms in first- and second-order motion. In this
paradigm, stimuli are independently varied at each of
two spatial locations and the observer was required to
make an independent response for both locations.

2 Fewer than three may suffice in certain situations with strong
inter-condition constraints (see also Dosher & Lu, 1999a,b).
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Fig. 2. Three possible attention mechanisms and the performance of the noisy perceptual template model under each of the three possible
mechanisms. (a) A PTM model in which attention operates via stimulus enhancement. (b) Prediction of performance of the model in (a): signal
threshold of the PTM model versus external noise contrast. These curves split at low external noise levels, and they overlap with each other at
high external noise levels. Stimulus enhancement can only improve performance in low external noise levels. (c) A PTM model in which attention
operates via external noise exclusion. (d) Prediction of performance of the model in (d). The signature feature of these curves is that attention only
modulates performance at high levels of external noise. (¢) A PTM model in which attention operates via internal multiplicative noise reduction.
(f) Prediction of performance of the model in (g). Attention affects performance at all levels of external noise, but increasingly so (in log units)

as external noise increases.

Statistical uncertainty issues in the decision process are
avoided in concurrent paradigms compared to com-
pound paradigms in which only one detection response
is required in a trial involving multiple locations (Shaw,
1980; Sperling & Dosher, 1986; Palmer et al., 1993;
Dosher & Sperling, 1998). In the two experiments re-
ported in this article, the display always consisted of
two motion stimuli, one above and the other below
fixation. Observers were cued on each trial to attend to
the location above or below fixation. The cue on each
trial was selected randomly from the two possibilities.
The motion stimulus was a (first-order in Experiment 1
and second-order in Experiment 2) sinewave modula-
tion moving either to the left or to the right. Varying
amounts of random external noise — from 0 to moder-
ately high contrast — was added to the basic motion
displays. The threshold signal contrast for each subject
in performing the motion direction discrimination task

was determined for all combinations of attention and
external noise conditions.

Both experiments used the following methods except
where noted.

3.1. Basic motion stimuli with external noise

A visual stimulus can be specified by a function
L(x, y, t) that defines the luminance of each point in
space (x, y) as a function of time ¢. For displays with a
fixed background luminance L,, a point contrast func-
tion, C(x, y, t) = (L(x, y, t) — Ly)/L,, is usually used to
describe the stimuli because most visual tasks depend
only on the local contrast C(x, y, t), not on L,.

In both of the experiments reported here, C(x, y, t)is
composed of a moving modulator M( fx + ywt) and a
stationary texture carrier 7(x, y), such that C(x, y, 1) =
M( fx+ ywt)T(x, y), where y = + 1 determines motion
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direction (left or right); T(x, y) =1 for the first-order
motion stimuli; 7(x, y) = + 1 or — 1 with equal proba-
bility for the second-order motion stimuli.

The modulator in first-order motion displays is
defined as:

M,\(fx + yot) =m, sin2z( fx + yot) + 0] (M
with m, as the modulation depth and 6, as the initial
phase.

The second-order modulator is defined as:
My(fx + yot) = 0.5+ m, sin[2z( fx + yot) + 6,] 2)

with m, as the modulation depth and 6, as the initial
phase. The term 0.5 in Eq. (2) is very important — it
ensures that, after fullwave rectification, second-order
stimuli with modulation m, ( < 0.5) will have a funda-
mental sinewave component at spatial frequency f and
temporal frequency w.

All the first- and second-order motion stimuli have
the same spatial frequency f at 0.55 cyc/deg and the
same temporal frequency w = 7.5 Hz. The carrier tex-
tures are all defined in a 5.1 x 4.4° region with each
texture element subtending 0.092 x 0.092°. The motion
stimuli were temporally sampled at every 90° phase
shift such that one full cycle of a motion display
consists of four distinctive frames. To remove any
positional cues, one cycle plus one extra frame (five
frames total) were always shown in a given trial such
that the first and the last frames were identical.

Gaussian distributed external noise with mean 0 and
certain experimenter controlled variance was added to
the basic motion displays: For a given frame of the
display, the motion stimulus and the external noise
occupied alternating rows (width =0.092°). Across
frames, a given row in the display alternated between
external noise and motion stimulus. To guarantee that
the external noise confirmed to the Gaussian distribu-
tion, the maximum standard deviation of the noise was
33% or less of the maximum achievable contrast.

3.2. Apparatus

All stimuli were present on a Nanao Technology
FlexScan 6600 monitor with a P4 phosphor and a
refresh rate of 120 Hz, driven by the internal video
graphics card in a PowerPC Macintosh 7500/100 com-
puter. The displays and data collection were controlled
in real time by programs using a C+ + version of
Video Toolbox (Pelli & Zhang, 1991; Fredericksen,
1996). To gain fine control of luminance levels, a
special circuit (Pelli & Zhang, 1991) was used to com-
bine two eight-bit output channels of the video card to
produce 6144 distinct gray levels (12.6 bits).

A psychophysical procedure was used to generate a
linear lookup table that evenly divided the entire dy-
namic range of the monitor (from 1 c¢d/m? to 53 cd/m?)

into 256 levels (Lu & Sperling, 1999b). Linear interpo-
lation was used to obtain finer gray level scales when it
is necessary. The background luminance was set at 27
cd/m>.

All displays were viewed binocularly with natural
pupil at a viewing distance of approximately 70 cm in a
dimly lighted room.

3.3. Design

Each experiment consisted of ten sessions, each made
of 448 trials and lasting about 0.5 h. In a given trial,
two (noisy) motion displays, one above and another
below the fixation point, were shown to the observer.
The observer was instructed by a cue to either attend to
the display above or below the fixation point with a cue
lead time of 83 ms. While the motion display lasted 167
ms, the total duration of the display measured from the
beginning of the cue to the end of the motion display
was 250 ms. This design was chosen to avoid saccadic
eye-movements to the attended location (Hallett, 1986).
The two basic motion displays in a trial were both of
first-order in Experiment 1, and of second-order in
Experiment 2. Moreover, the modulation depths of the
motion stimuli and the variance of the external noise in
the two motion displays were always the same, though
the motion directions of the stimuli in the two displays
were chosen randomly and independently. The observer
was required to report the motion direction of the
attended display and then the unattended display by
pressing certain keys on the computer keyboard. A
beep followed immediately after each correct response.
Subjects were told that a correct response at the at-
tended location was worth 10 points while a correct
response at the unattended location was only worth 1
point. A typical trial sequence is depicted in Fig. 3.

In each session, two attention conditions (attend to
the display above or below the fixation point), and
eight different external noise rms contrasts (0, 0.02,
0.04, 0.08, 0.12, 0.16, 0.25, and 0.33), were intermixed.
The method of constant stimuli (Woodworth, 1938)
was used to measure psychometric functions for each
attention condition and each external noise level. Every
psychometric function was sampled at seven signal
contrast levels. Eight trials were obtained at each signal
contrast level on every psychometric function per ses-
sion. The signal contrasts were pre-determined through
pilot studies.

Each observer first participated in five training ses-
sions in which only four external noise levels were used.
We concentrated on the stabilized performance. After
the training phase, data from the next ten sessions were
combined to generate 16 psychometric functions, one at
each attention condition and each external noise con-
trast level.
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Fig. 3. Experimental procedure for first-order motion. Following a subject key press, a fixation display appears for 0.25 s. The fixation display
includes two square-frames each displaced 6.9° above or below the central fixation cross. Then an attention cue replaces the fixation dot,
instructing the observer to attend to the top (or the bottom) display. The cue appears 83 ms prior to the stimulus. The stimulus includes five
frames of first-order motion stimulus embedded in external noise in alternating rows. All noise samples in each trial are independent samples with
the same variance (contrast), as do the signal frames. Each frame appears for 33.3 ms, so the total time from the beginning of the attention cue
to the end of the signal frame is only 250 ms; this precludes an eye movement to the attended location. After the stimulus sequence, a 250 ms
response cue instructing the subject to report the motion direction at the attended location first, then the unattended location. The trial ends with

auditory feedback for both top and bottom responses.
3.4. Observers

Three observers, all with normal or corrected-to-nor-
mal vision, served in the experiments. Two were naive
to the purposes of the experiment, the third is the
second author of this paper.

3.5. Data analysis procedures

For each observer in each experiment, data were
analyzed in two steps: (1) extract contrast thresholds at
three criterion performance levels from the maximum
likelihood fitting Weibull functions for each of the 16
psychometric functions; and (2) fit the PTM model with
various combinations of attention mechanisms to the
threshold data and statistically compare the model fits.

3.5.1. Calculating contrast thresholds

For every subject and external noise condition in an
experiment, we combined data from attending to the
top and attending to the bottom to form ‘attended’ and
‘unattended’ categories. We then tabulated percent cor-
rect in motion direction discrimination at seven con-
trast levels for each attention x external noise
condition. A Weibull function:

Percent correct = 1.0 — 0.5 x 2~ /" )

was fit to each of the 16 psychometric functions for
each observer using a maximum likelihood procedure
(Hays, 1981). Finally, we computed threshold signal
contrast at three performance levels: 65, 75 and 85%

correct identification, corresponding to d’ of 0.77, 1.35
and 2.07.

The standard deviation of each threshold was esti-
mated using a re-sampling procedure (Maloney, 1990).
The procedure assumes that, at a given signal contrast
for every attention and external noise condition, the
number of correct responses has a binomial distribution
with a single event probability p, best approximated by
the measured percent correct in the condition, and an N
equal to the number of trials in the condition. We
constructed a ‘theoretically re-sampled’ psychometric
function for each attention x external noise condition
by generating the number of correct responses at each
of the seven contrast levels from the assumed binomial
distributions. Repeating this process 25 times, we gener-
ated 25 theoretically re-sampled psychometric functions
in every attention x external noise condition. Maximum
likelihood Weibull fits were performed on each of the
25 ‘theoretical’ psychometric functions. Twenty-five
thresholds were computed from the best Weibull fits at
each of the three criterion levels (65, 75 and 85%
correct). A standard deviation for the threshold at each
criterion level was then estimated from the 25 samples.
Standard deviations yields error bars on the estimated-
threshold.

3.5.2. PTM model fits

To quantify the magnitude of the attention effects
and to characterize the attention mechanisms involved,
we fit PTM models (Eq. (A4)) with various possible
combinations of attention mechanisms to the threshold
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data. First, we set 4,,=1.0, A, =1.0, and 4,=1.0 for
the unattended condition. Then, eight models, each
with a unique combination of A4,,, 4, and A, as free-
varying parameters for the attended condition in addi-
tion to the ‘common’ free parameters of the two
attention conditions (N,q4, Npmu» S and y), were fit to
the data of each individual observer and compared. (If
a particular 4 does not occur in a condition, it is
automatically set to 1.0, equal to the unattended condi-
tions.) (1) Multiplicative noise reduction (A4, <1.0),
stimulus enhancement (A4, < 1.0) and external noise re-
duction (4,< 1.0); (2) multiplicative noise reduction
(A, <1.0) and stimulus enhancement (4, < 1.0); (3)
stimulus enhancement (A4, < 1.0) and external noise ex-
clusion (4;<1.0); (4) multiplicative noise reduction
(4,, < 1.0) and external noise exclusion (A4;< 1.0); (5)
multiplicative noise reduction (4, < 1.0); (6) stimulus
enhancement (A4, < 1.0); (7) external noise reduction
(Ar < 1.0); (8) no attention effects (4, = 4, = A= 1.0).
Wherever it is appropriate, an F-test for nested models
was used to compare and select models.

The fitting procedure was implemented in Matlab. It
was applied to data sets with thresholds at three perfor-
mance levels in each of the two attention and eight
external noise conditions. For a given PTM model with
a particular set of A,,, A, and A, as parameters for the
attended condition, the procedure consists of: (1) set-
ting parameters, N, Na.aa>» f> y and the particular
combination of A,, 4, and A; using Eq. (A4) to
compute log(cth*°?) from the PTM model with guessed
parameter values for each attention and external noise
condition; (2) computing the squared difference be-
tween the log threshold prediction from the model and
the observed sqdiff = (log(c®°™) —log(c,))*> for each
attention and external noise condition at each perfor-
mance level; (3) computing L: summation of sqdiff
from all the attention and external noise conditions at
all three performance levels; (4) using a gradient de-
scending method to adjust all the parameters to find the
minimum of L;* and (5) after obtaining the least square
L, computing the r? statistic to evaluate the goodness of

the model fit:

Y llog(ciree™) —log(c)l
r2=1.0— @)

Y [llog(c,) —mean(log(c,))?

where X, and mean () runs over all the attention and

3The log approximately equates the standard error over large
ranges in contrast thresholds, corresponding to weighted least
squares, an equivalent to the maximum likelihood solution for con-
tinuous data. In the current data set, this assumption is true.

external noise conditions at all three performance levels
for a particular observer in an experiment.

An F-statistic can be computed for each pair of
nested models:

_ (V%Llll B r?educed)/df‘l
FOR =20 yar, ®

where df; = kpy — Kreduceds and dfs = N — kg The ks
are the number of parameters in each model, and N is
the number of predicted data points. Non-nested mod-
els with the same number of parameters were compared
directly using their r2 values.

4. Experiments

4.1. Experiment 1. Concurrent first-order motion
direction judgment at two spatial locations

In this experiment, two first-order motion displays
with identical stimulus modulation depth, identical ex-
ternal noise variance, but independently chosen motion
directions were shown simultanecously in each trial to
the observer at two separated spatial locations: one 6.9°
above fixation and the other 6.9° below fixation.* The
observer was cued 83 ms prior to the beginning of the
motion displays to pay attention either to the location
above or below fixation and to make independent
judgments of motion direction first at the attended and
then the unattended locations (Fig. 3).

Psychometric functions for each of the eight external
noise levels were tabulated for both attended and
unattended conditions. Threshold contrasts for each
joint attention and external noise condition at three
performance levels, 65, 75 and 85% correct, were com-
puted from Weibull fits to the psychometric functions.
Threshold signal contrasts at three performance levels
were necessary in discriminating PTM models (Dosher
& Lu, 1999a,b; Lu & Dosher, 1999). Because of the
similarity in the appearance of the thresholds at the
three performance levels, Fig. 4 shows only thresholds
at 75% correct as a function of the rms external noise
contrast in both attended and unattended conditions.
Each panel of the figure corresponds to an observer.
Error bars are estimated standard deviations of each
threshold value from the resampling method.

Adding external noise clearly had significant effects
on observers’ performance: averaged across attention
conditions, the threshold increased from 0.65, 0.55 and
0.88% at 0 external noise to 2.9, 1.3 and 2.9% at
maximum external noise for observers CS, QL and SM,

4 The two stimulus regions were separated by at least 9°, far greater
than distances that were known to produce significant interactions
between two motion patches.
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Fig. 4. Threshold contrast (rms contrast of the Gabor) versus external noise level (rms contrast of the Gaussian random noise) for three subjects
each in two different attention conditions (Experiment 1: first-order motion). The curves are generated from the best fit PTM model without any

attention effects.

respectively.® On the other hand, attention instructions
had very small effects on observers’ performance — the
two signal threshold contrast versus external noise
functions for the attended and the unattended condi-
tions for each observer were virtually identical within
the variability of the estimates of the thresholds. These
effects are quantified using the PTM model.

PTM models with all possible single mechanisms and
mixtures of the three attention mechanisms were fit to
the threshold data at three performance levels for each
observer. For all three observers, the simple PTM
model without any attention modulation (4,,= 1.0,
A,=1.0 and 4;= 1.0 in both attended and unattended
conditions) fit the data well (P> 0.10 in comparison
with any of the other PTM models with 4 < 1.0 in the
attended condition). In other words, we found no atten-
tion effects in concurrent first-order motion direction
judgment at two spatial locations. The best fitting
parameters are listed in Table 1 and the corresponding
PTM model predictions are plotted in Fig. 4 along with
the data.

4.2. Experiment 2. Concurrent second-order motion
direction judgment at two spatial locations

Two second-order motion displays with identical tex-
ture-contrast modulation depth, identical external noise
variance, but independently chosen motion directions
were shown simultaneously in each trial to the observer
at two separated spatial locations: one 6.9° above fixa-
tion and the other 6.9° below fixation. The observer
was cued 83 ms prior to the beginning of the motion

> We have rarely observed any dipper-shaped TVC functions in our
applications of the external noise method. We believe that the dipper-
shaped TVC function in the middle panel of Fig. 4 (data for observer
QL) was due to random fluctuation.

displays to pay attention either to the location above or
below fixation and to give answers to the motion
direction first at the attended then the unattended
location (Fig. 5).

The data analysis procedure was identical to that of
Experiment 1. Threshold texture-contrast modulation
for each attention x external noise condition at three
performance levels, 65, 75 and 85% correct, were com-
puted from Weibull fits to the psychometric functions.
Because the same data pattern was observed across
three criterion levels, only thresholds at 75% correct
were shown as TVC functions in Fig. 6. Error bars are
estimated standard deviations of each threshold com-
puted using the resampling method (Maloney, 1990).

Adding external noise clearly had significant effects
on observers, performance: averaged across attention
conditions, the threshold increased from 25, 24 and
27% at 0 external noise to 32, 33 and 33% at the
maximum external noise for observers CS, QL and SM,
respectively. Attention instructions had relatively large
effects when the external noise was low and small to no
effects when the external noise was high. The pattern is
consistent with a stimulus enhancement mechanism of
attention.

For each observer, PTM models with all possible
single and mixtures of the three attention mechanisms
were fit to the threshold data at all at three criterion
levels. The PTM model with only A4, as the free
parameter in the attended condition best fit the data:

Table 1
Parameter estimates first-order motion

Subject N Nada B y r

CS 0.2817 0.001524 14.72 2.620 0.9771
QL 0.4403 0.001343 36.50 3.351 0.8647
SM 0.0000 0.006429 13.26 2.316 0.9628
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4.4°

250 ms 83 ms

250 ms

Fig. 5. Experimental procedure for second-order motion. Following a subject key press, a fixation display appears for 0.25 s. The fixation display
includes two square-frames each displaced 6.9° above or below the central fixation cross. Then an attention cue replaces the fixation dot,
instructing the observer to attend to the top (or the bottom) display. The cue appears 83 ms prior to the stimulus. The stimulus includes five
frames of second-order motion stimulus embedded in external noise in alternating rows. All noise samples in each trial are independent samples
with the same variance (contrast), as do the signal frames. Each frame appears for 33.3 ms, so the total time from the beginning of the attention
cue to the end of the signal frame is only 250 ms; this precludes an eye movement to the attended location. After the stimulus sequence, a 250
ms response cue instructing the subject to report the motion direction at the attended location first, then the unattended location. The trial ends

with auditory feedback for both top and bottom responses.

P <0.0005 in comparison with the null, no-attention
effect model in which 4, = A, = A, = 1.0 in the attended
condition (For CS, QL and SM, F(1, 42) =45.80, 44.15,
54.71, respectively) P > 0.10 for all the more saturated
models: models with mixed attention mechanisms of A4,
and A4, (F(1, 42)=0.0, 0.0, 0.0) A4, and A; (F(1,
42) =2.302,0.6992),and 4,, A, and 4, (F(2,41) =1.178,
0.3413). In addition, the PTM model with a single 4, has
higher r? (r*=0.9307, 0.9294, 0.9206) than the PTM
models with 4, (r> = 0.8843, 0.8605, 0.8399) or 4,, alone
(r*>=10.8573, 0.8569, 0.8559), or a mixture of 4, and 4,,
(r? =0.8969, 0.8927, 0.8697). We conclude that stimulus
enhancement is the attention mechanism in concurrent
second-order motion direction judgment at two spatial
locations. The best fitting parameters are listed in Table
2 and the corresponding PTM model predictions are
plotted in Fig. 6 along with the data.

From Table 2, in second-order motion, attending to
a location reduces internal additive noise at that location
to about 73% of that at the unattended location. This is
mathematically equivalent to enhancing stimulus at the
attended location by a factor of 1/0.73 =1.37 (Lu &
Dosher, 1998a,b). Given that, in the second-order mo-
tion system, the high internal additive noise is the true
limiting factor in observer performance, such an atten-
tion mechanism could be extremely important and effec-
tive.

5. Summary and discussion

In this study, we found that observers could, without

any loss, simultaneously compute first-order motion
direction at two widely separated spatial locations across
a wide range of external noise levels. Whereas our result
at 0 external noise level is consistent with the previous
literature (Dosher et al., 1989; Landy et al., 1991;
Horowitz & Treisman, 1994; Verghese & Stone, 1995),
we have also extended the result into high external noise
regions which may be a more realistic sample of the
normal visual environment. We also found that, even
though it is possible for observers to extract second-order
motion direction at two widely separated spatial loca-
tions, considerable loss occurs at the unattended loca-
tion. This result is also consistent with the other studies
in the literature (Dosher et al., 1989; Landy et al., 1991;
Horowitz & Treisman, 1994; Ho, 1998). What is novel
in the current study is that the external noise plus
attention paradigm allowed us to identify the attention
mechanism involved in multi-location second-order mo-
tion processing as stimulus enhancement, distinctively
different from external noise exclusion, usually resulting
from better tuning of the template at the attended
locations.

We found in the current study that, in second-order
motion perception, attending to a spatial location en-
hances stimulus contrast at that location by a factor of
about 1.37 relative to the unattended location. To
compare the magnitude of this effect with other empirical
and theoretical attention effects in the literature, we first
have to cast our results in terms of attended versus equal
attention conditions. Assuming that equal attention is in
the middle of the attended and the unattended condi-
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Fig. 6. Threshold contrast (rms contrast of the Gabor) versus external noise level (rms contrast of the Gaussian random noise) for three subjects
each in two different attention conditions (Experiment 2: second-order motion). The curves are generated from the best fit PTM model with
stimulus enhancement. Attention affected threshold contrast only at low external noise levels. For higher levels of external noise, attention
conditions did not affect threshold contrast values at all. Fitting PTM model to the data suggests that attention operates via enhancing signal by

about 1.37 at attended locations.

tions, the magnitude of the attention effect (attended
versus equal attention) is about 18%. Suppose a fixed
amount of capacity is shared between the locations
(Broadbent, 1957; Lindsay, Taylor & Forbes, 1968;
Broadbent, 1971) or equivalently, perception is based
on sampling the input information some fixed number
of times (the sample size model, Lindsay et al., 1968;
Kinchla, 1980; Shaw, 1980), one would predict that the
magnitude of the attention effect should be 41% be-
cause the fixed number of samples (or capacity) has to
be distributed at two locations in the equal attention
condition which will reduce the signal to noise ratio by
a factor of \/ 2 in comparison to allocating the full
capacity to the attended location in the attended condi-
tion. Relative to a maximum effect size of 41%, the
magnitude of the observed attention effect in second-
order motion is 18%, somewhat under half of the
maximum effect size under the sample size model.
Palmer (1994) found that for simple search tasks, the
set-size effect can be fully accounted for by stimulus
uncertainty. (Stimulus uncertainty is not relevant to the
current experiments because they utilize concurrent
tasks). For complex search tasks, he found that an
additional 10% to 28% ‘perceptual coding’ effect was
involved in producing the larger set-size effects. Our
18% attentional effect is comparable to the additional
perceptual coding effects estimated by Palmer (1994)
for more complex search tasks. On the other hand, one
should be cautious about the conclusions drawn from
calculations based on this extreme version of a capacity
model. The full tradeoff assumptions of, for example,
the sample size version of the capacity model have only
been observed for fully incompatible tasks such as
simultaneously searching for digits among letters and
letters among digits in two display regions (Sperling &

Melchner, 1978), whereas searching for a digit among
letters in two display regions yielded less extreme losses.
It seems to be more realistic to assume that only partial
capacity competition occurs between multiple locations
in situations like ours where the tasks are compatible.
The stimulus enhancement mechanism has also been
found to be operative in a concurrent Gabor orienta-
tion discrimination task at two widely separated spatial
locations (Lu & Dosher, 1998a,b). One natural question
is: Can we generalize our conclusions to other attention
tasks? The answer to this question is both theoretical
and empirical. Applying the external noise plus atten-
tion paradigm to a different set of attentional manipu-
lations in which the observer is either pre-cued or
simultaneously cued to a form discrimination at one of
four spatial locations, attention exclusively affects per-
formance at high levels of external noise, reflecting a
mechanism of external noise exclusion (Lu & Dosher,
1998b, 1999; Dosher & Lu, 1999b). In a perceptual
learning experiment, coupled improvements in
threshold contrast at both high and low levels of exter-
nal noise were found following many days of practice
(Dosher & Lu, 1998, 1999a) reflecting a mixture of
external noise filtering and internal additive noise re-
duction. Manifestation of a particular attention mecha-
nism is neither trivial nor obligatory. Further research
is under way to explicate the circumstances under
which various attention mechanisms operate.
Observers could simultaneously attend to first-order
(but not second-order) motion computations with no
(or very little) loss at two widely separated spatial
regions in a broad range of external noise conditions.
This result is consistent with earlier observations that
the set size effect in searching for a first-order moving
target that moves faster than the distractors could be
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Table 2
Parameter estimates second-order motion

Sle_] ect Au Nm ul Nadd [)) 14 r

CS 0.7523 0.0000 0.04634 1.2170 2.5374 0.9307
QL 0.7302 0.0000 0.04701 1.2025 2.3382 0.9294
SM 0.7189 0.0000 0.07745 1.2572 2.2474 0.9206

fully accounted for by uncertainty effects in the decision
process (Verghese & Stone, 1995). This observation
provides important theoretical constrains for higher level
perceptual and cognitive processes that depend on low
level motion information from multiple spatial locations.
Only the first-order motion system is capable of provid-
ing primary input to higher level mechanisms requiring
motion analysis at several locations, even though the
second-order motion system may be important in certain
other perceptual processes (Wilson, Ferrera & Yo, 1992).
On the other hand, our current comparisons of first-order
and second-order motion processing at multiple loca-
tions, like most such comparisons in the literature, are
based on equating stimulus characteristics, e.g. the same
modulator spatial frequency, the same temporal fre-
quency, and the same retinal eccentricity. In such cases,
the nominal stimulus is matched but the processing load
on the perceptual system is not. It is well known in the
motion literature that the spatial resolution of the first-
and second-order motion systems are very different at the
same eccentricity (Solomon & Sperling, 1995). We spec-
ulate that if we knew how to match the two kinds of
stimuli in terms of the perceptual demand, first-order and
second-order motion processing at multiple locations
might produce the same attention effects. Further inves-
tigation of more demanding first-order tasks might reveal
an attentional benefit similar to that documented here for
second-order motion stimuli.
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Appendix A

The perceptual template model (PTM)

In this appendix, we outline a mathematical descrip-
tion of the PTM model and its signature performance
patterns for the three mechanisms of attention. To

simplify the mathematical description, we chose to use
only the expectations of the random variables and ignore
certain cross products. At the meantime, we also used one
particular form of the PTM model with a late additive
internal noise and a single transducer nonlinearity. The
consequences of these choices and simplifications have
been previously discussed (Dosher & Lu, 1999a,b; Lu &
Dosher, 1999). There is good reason to believe that the
errors introduced by these simplifications are very small
compared to the range of effects in typical data (Dosher
& Lu, 1999a; Lu & Dosher, 1999).

A.l1. Theoretical TVC functions from a PTM model

In general, a signal can be expressed as a function of
space and time: S(x, y, t) = ¢So(x, y, 1), where ¢ is stim-
ulus contrast and S, is rescaled such that
] S3(x, y, t) dx dy dr=1.0. The contrast of random
external noise used in these experiments can be expressed
as: N(x,p,t)=N,G(x,y,t) where the value of
G(x, y, t) at a particular spatio-temporal point (x, y, )
is drawn from a Gaussian distribution with mean 0 and
S.D. of 1.0. For a template matching function 7'(x, y, t),
matching the template to a signal-valued stimulus yields
the output: Te= ([ T(x,y, 1) S(x, p, 1) dx dy dr =
¢|ff T(x, y, t) dx dy dt; The output of template match-
ing operation to the external noise is: T = [[f T-
(x,», 1) N(x, p, 1) dx dy dt = N ||| T(x, y, 1) G(x, y, 1)
dx dy dt. For a fixed template and a fixed signal stimulus,
Ts, = [|J T(x, », )So(x, p, 1) dx dy dr is a constant;
To= ||| T(x, y, )G(x, y, 1) dx dy dr is a Gaussian ran-
dom variable with mean 0 and a fixed standard deviation
or . Because mathematically, 7 and T, can only be
known up to a constant, without losing any generality,
we set o to 1.0. Thus, after template matching, Ty =
N..G(0, 1), Tg= fc, where f = TSO/O'TG.

The stimulus (signal plus external noise) is then
passed through the nonlinearity |-|”. At the decision
stage, the distance between signal and noise is: (fc)’,
the total variance of the noise is the sum of the variance
of all the noise sources: the external noise NZ,, the

exts

multiplicative noise® N2 ,((fc)* + N2), and the addi-

¢ Multiplicative noise is in proportion to the signal and external
noise power; this form eliminates cross products. Lu and Dosher
(1999) showed that, consistent with the elimination of the cross
product in the multiplicative noise, ratio of thresholds in the same
external noise condition between two performance levels is a constant
across all the external noise levels.
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tive internal noise N24,. Thus, signal discriminability,
d', is determined by the signal to noise ratio:

. (Bey

NG A Nl (Be) + NE) + Naa
For a given fixed d’ (corresponding to a fixed criterion
performance level), one can solve Eq. (Al) for the

threshold contrast ¢, as a function of external noise
level Noy:

ext*
H (14 Np N+ Noga |V
c.,=—
TR 1/d*— N2

mul
A.2. Signature patterns for attention mechanisms

d

(AD)

(A2)

Within the framework of a PTM model, attention
could have impacts in three different ways: (1) stimulus
enhancement, modeled by reducing internal additive
noise by a factor 4, < 1.0. (2) External noise exclusion,
modeled by multiplying the amount of external noise at
attended locations by a factor 4;<1.0. (3) Internal
multiplicative noise reduction, characterized by reduc-
ing N, by a factor 4,, <1.0.

The effect of all possible single and/or mixture mech-
anisms is summarized in one single equation by
combining the effects of A4,, A and A4,:

¢ _1[0 +(AmNmmY)(AfNext)zu(AaNadasz .

T IB l/d,2 - (/Im]vmul)2
In log form:

log(c.)
1 .,
= 273) log[(l + (AmNmul)z(AfNext)Z/ + (AaNddd)z]

1
2y log[1/d"* — (ANpu)*] — log B (Ad)
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