屈光参差性弱视的知觉机制及知觉学习

吕忠林 黄昌兵 周逸峰

[摘要] 弱视是一种由视觉系统发育障碍所引起且不能通过光学途径加以矫正的视力缺陷。尽管通常认为弱视反映了发育过程中异常视觉经验引起的视觉皮层功能异常，但其神经机制至今未被完全阐明。本文结合我们最新的研究综述了弱视损害的知觉机制，并探讨通过知觉训练改善弱视患者视觉功能的可能性。成人弱视的视觉系统仍存在一定的可塑性，传统的发育关键期理论应进行重新评估。（眼科，2008，17:289-297）

【关键词】弱视；屈光参差；知觉学习

Perceptual mechanisms and perceptual learning in anisometric amblyopia LU Zhong-lin, HUANG Chang-bing, ZHOU Yi-feng; Laboratory of Brain Processes (LOBES), Dana and David Dornsife Cognitive Neuroscience Imaging Center, and Departments of Psychology and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089-1061, USA
Corresponding author: LU Zhong-lin, Email: zhonglin@usc.edu

【Abstract】Amblyopia is a developmental visual disorder characterized by reduced vision in the absence of any detectable structural or pathological abnormalities that can not improve with refractive correction. Although it has been identified as a cortical impairment, a complete neural account of amblyopia is still unavailable. In this article, we review our most recent research on the mechanisms of amblyopia and the possibility of perceptual learning as a therapeutic tool for adult amblyopia. We conclude that the adult amblyopia visual system still exhibits large degrees of plasticity; the concept of critical periods in visual development should be re-examined. (Ophthalmol CHN, 2008,17:289-297)

【Key words】amblyopia; anisometric; perceptual learning

弱视是一种由视觉系统发育障碍所引起且不能通过光学途径加以矫正的视力缺陷，它在普通人群的发病率约为3%[1-3]。尽管多数学者认为弱视是由发育早期的异常视觉经验引起的视觉皮层功能异常所致，但其具体的神经机制至今尚未完全阐明[4-6]。弱视动物模型研究发现弱视眼驱动的 V1 区神经元的对比敏感度及空间分辨率特性均存在异常[7,8,9]；大脑功能成像研究也在人类弱视患者中发现了类似损害[10-13]。

传统理论认为视觉系统在发育关键期后(通常6-8岁)就不再有可塑性[13]。就弱视而言，临床上多对儿童弱视患者施以遮盖疗法，而对成人弱视则无有效治疗手段[12]。然而在正常成年人中进行的知觉学习研究则表明成人视觉系统仍保留了相当程度的可塑性[14,15]。

本文将综述最近一些关于弱视的知觉机制及应用知觉学习治疗弱视的研究。我们将主要讨论屈光参差性弱视，因为它是弱视的主要类型之一，其他类型的弱视，如斜视性弱视，可能机制不同[16,17]。

一、屈光参差性弱视的损害机制

空间视觉能力通常是从测量对比敏感度和视敏度加性度量的[12]。外部噪音技术及相关模型使我们能够用知觉系统的内在限制性因素来解释对比敏感度和视敏度[18](图1)。通过测量多个正确率水平下的“对比度阈值”外部噪音(threshold versus contrast function, Tc)曲线，外部噪音技术可以揭示知觉系统内部的限制性因素：加法噪音，对比例度增益控制或乘法噪音，非线性因素及统计不确定性[20-22]。

外部噪音方法早期主要用于比较受试者在执行不同知觉任务时的限制性因素[20]，最近则被广泛用于确定由于受试者认知状态发生改变所引起的行

Kersten等[31]最早将外部噪音方法应用于对患者的视觉功能异常研究。基于线性放大模型(linear amplifier model, LAM)[31]，他们发现其中2例弱视患者具有正常或接近正常的选择性，但高于正常值的内部加法噪音，而另外1例患者则具有较低的选择性。应用外部噪音方法研究弱视机制的后续工作没有取得一致性的结果[32-38]。一些作者认为弱视的知觉机制是选择性，而另一些作者则归因为内部加法噪音升高或刺激依赖性乘法噪音升高。尽管这些不一致的结论可能是由于不同研究中所用的受试者的特征不同，但也有可能是因为结果会随时间或条件不同而改变。在不同任务与条件下系统地测试同一受试者对于理解这种实验结果很有意义。另一方面，上述研究的基调均是基于线性放大模型(LAM)，但LAM有很多理论上的局限性，甚至会引起自相矛盾的结论，比如Pelli等[33]发现弱视眼内部噪音水平在一些情况下会低于正常眼。Lu等[34]研究显示，LAM模型必须整合一个非线性成分和一个乘法噪音成分而成为知觉模型(PTM)(图2a)才能解释所有现有文献中的数据。PTM提供了一个完整的理论框架，能从知觉模板的调谐、内部加法和乘法噪音水平等三个方面比较弱视和正常视觉系统(图2b、c、d)。

图1 外部噪音技术。通过测量不同程度外部噪音水平下达到一定正确率所需的信号对比度，可得“信号对比度阈值-噪音对比度(Threshold versus Contrast, TcC)”曲线。基于知觉模板模型(PTM，图2)可分析系统的相关参数。(a) 从左到右，外部噪音由弱到强。(b) Gabor光栅掩埋在递增的外部噪音图像中。(c) TcC曲线：不同外部噪音水平下达到一定正确率(d'=1.414)所需的信号对比度

图2 a为知觉模板模型(PTM)；b、c、d为与弱视功能损害的三个可能机制对应的功能 TcC 曲线。

Xu等[36]在PTM的框架内研究了屈光参差性弱视患者知觉损害的机制。12例正常受试者(22.1 ± 0.6岁)和10例弱视患者(20.3 ± 0.5岁，其中9例为屈光参差性弱视，1例为斜视/屈光参差混合型弱视)纳入该研究。目标刺激为偏离垂直方向±12°或-12°的Gabor光栅。目标刺激被一定水平的外部噪音图像(高斯噪音)掩蔽。外部噪音有8种不同水平，其标准差分别为0.01, 0.04, 0.08, 0.12, 0.16, 0.25, 0.33。在每个外部噪音条件下，分别测量受试者两只眼在两种不同精确度水平(79.3%和70.7%)下的对比度值(即两条TcC曲线)。所有受试者都参与了在Gabor光栅的空间频率为2.3周期/度下的测试，4例正常者和4例弱视患者还参与了
在 Gabor 光栅的空间频率为 1.5 周期/度和 4.6 周期/度下的测试。

对正常人和弱视患者的相对健眼而言，对比度阈值只在低噪音水平下随着测试的空间频率升高而升高，高噪音水平下的阈值则与空间频率无关（图 3）。具体而言，当 Gabor 光栅的空间频率从 1.5 周期/度增加到 4.6 周期/度时，正常眼和弱视患者的相对健眼在三个最低噪音水平下的对比度阈值平
均增加了 85%±6%，在最高的三个噪音水平下的阈值则无显著改变（-9%±3%）。这与 Chung 等[33]报告的结
果一致，他们发现正常眼在高噪音水平下的对比敏感度曲线（contrast sensitivity function, CSF）是平的，而非典型的倒 U 字型。对弱视眼而言，在所有噪音水平下的对比度阈值均随着测试空间频率的增加而升高。当 Gabor 光栅的空间频率从 1.5 周期/度增加到 4.6 周期/度时，弱视眼在三个最低噪音水平下的对比度阈值平均增加了 342%±21%，在最高的三个噪音水平下的阈值平均升高了 130%±20%。弱视眼的结果与相对健眼及正常眼的结果差异非常大。

通过 PMT 拟合我们发现所有弱视被试的对比敏感度损害都需要内部加权噪音的升高和模板调谐变差（即外部噪音的排除能力下降）两种机制的共同作用才能加以解释（图 4）。我们还发现内部噪音（r=0.673, P<0.01）和模板的调谐（r=0.838, P<0.01）与弱视眼的视锐度显著相关，这与 Pelli 等 [33]的结果一致。这种高度相关性并不出人意料，因为视锐度本身就取决于视觉系统的输入的噪音和模板的调谐。

我们的结论是，弱视的知觉功能损害可以归因于内部加权噪音的升高和模板调谐的变坏。内部噪
音的升高体现在所有的空间频率，而模板调谐的变差程度则随着 Gabor 光栅空间频率的升高而升高。McKee 等[34]发现弱视眼在一些要求高频信息处理的任务中表现出更强的损害，这与我们的结果一致。

二、“已治愈”弱视患者的空间视觉损害研究

在临床上，弱视治疗效果的评价基本上都是基于视锐度的提高程度[34-4]。中华眼科学会、全国儿童弱视、斜视防治组定义弱视的治愈标准为视力达到 0.9 且能保持至少 3 年。

尽管视锐度可以用来方便地检测视觉系统的空

Huang 等[54]采用正弦光栅和标准的心理物理学方法测量了治愈弱视患者的对比敏感度曲线。5 例治愈弱视患者(1 例屈光参差性，3 例斜视性，1 例屈光参差/斜视混合性)参加了本试验，平均年龄 (10.6 ± 1.8) 岁。以前的相对健眼(pFE)和弱视眼(pAE)的平均视锐度分别为 0.936±0.021 和 0.944±0.019 MAR(最低分辨阈值)，并且至少保持了 3 年。试验采用经典的 2 选 1 强制检测任务(two-interval forced-choice detection，2 IFC)和 2 进 1 阶梯法(2/1 staircase)测量了患者双眼检测空间频率为 0.5, 1.2, 4, 8, 12 和 16 周期/度的正弦光栅的对比度阈值。

图 5 表明了所有受试者的对比敏感度曲线。受试者内方差分析(within-subject analysis of variance)表明，相对健眼(pFE)的对比敏感度明显高于弱视眼(pAE)，且双眼之间的对比敏感度差异取决于空间频率(极显著差异：12 周期/度和 16 周期/度；显著差异：8 周期/度；边缘显著：2 周期/度)。前弱视眼(pAE)的平均截止频率为 14.8±2.5 周期/度，前相对健眼(pFE)的平均截止频率为 22.3±2.4 周期/度。

我们还基于 PTM 模型分析了前弱视眼对比敏感度损害的内在机制，结果表明此种损害来源于两个方面：在低频到中频主要表现为内部加法噪音的升高，高频则为内部加法噪音升高和模板调谐能力下降共同作用的结果，这与 Xu 等[36]在成人弱视研究中得到的结果一致。

应用字母表作为刺激，也有文献报道治愈弱视的对比敏感度存在损害[43,52,55]。尽管视锐度通常被认为反应了视觉系统的截止空间频率信息，但视锐度事实上已经于视觉刺激中远低于截止空间频率的信息，可能弱视患者可以用低中空间频率通道去完成阅读等很多任务。在高空间频率下进行选择性训练也许可以降低“治愈”弱视患者的高频损害。

三、知觉学习可以提高成人弱视患者的空间视觉能力

Campbell 等[35]最早报告了知觉训练可于治疗弱视，但随后的研究没有证实这种可能性[46,47]。值得指出的是，这些前期的研究多数采用的是与对比度刺激量入为出的训练时间(如 7 分钟)；而正常人知觉学习的研究表明，上述训练需要成千上万甚至更多次数的训练。

近年来，新的研究发现一些简单空间视觉任务的高强度训练可以显著地提高成人弱视患者的视力[63-70]。比如，Levi 等[46,47]发现训练测验标准任务后，2 例屈光参差性成人弱视患者的视力显著提高，这显示了弱视患者的视觉系统即使在成年以后仍具有相当程度的可塑性。

在一项研究中，我们发现用一些简单的视觉检测任务训练成人和青少年弱视患者可显著改善他们的对比敏感度和视力[101]。23 例屈光参差性弱视患者被随机分成 3 组，进行不同模式的正弦光栅检测训练。第 1 组 7 例患者 (18.1±2.9 岁) 在各自的截止空间频率下接受训练(定义为对应于截止敏感度阈值为 0.50 的空间频率)，第 2 组 10 例患者 (20.5±3.7 岁) 在 9 个不同空间频率下同时受训，第 3 组 6 例患者 (18.7±4.6 岁) 作为对照(不训练)。所有训练都只在弱视眼进行。为了比较
组对比敏感度和视力分别提高了0.7 dB (7.8%) 和 1.0 dB (12.5%)。

相对于对照组，在截止空间频率训练(第 1 组) 和在 9 个不同空间频率训练(第 2 组)都能显著提高弱视眼的对比敏感度和视力，这表明这种空间视觉的改善是由于训练而非重复测试所致。

比较而言，第 1 组与第 2 组提高更多，尽管提高的幅度上并无显著的统计学差异。从这个意义上来说，在弱视患者的截止空间频率训练可能是一种比较好的训练模式。

我们还检测了 8 例受者的知觉学习效果的保持情况。结果表明视力提高几乎可以完整地保持至少 5 个月，1 年后也可保持约 90%。其中 2 例受者的视力基本保持至 18 个月。我们研究表名，训练简单的光栅对比度检测任务不但可显著提高受者的对比敏感度和视力，而且可以长期保持训练的效果。这些结果提示知觉学习可能对成人弱视的治疗具有重要的临床价值。

四、屈光参差性弱视患者知觉学习的带宽
正常视觉系统知觉学习的一个重要标志是其特异性，即学习的效果特异于训练任条，训练刺激(如朝向、运动方向等)或训练的视觉任务位置[21]。如果弱视视觉系统的知觉学习也具有很强的特异性，那么我们必须用很多不同种类的视觉空间任务进行训练才能提高弱视患者在一定范围内视力，知觉学习的启动十分低。只有弱视视觉系统的知觉学习表现出很强的传递特性，知觉学习可能成为一种高效率的治疗方法。尽管最近的一些知觉知觉学习结果都表现出一定传递特性，如亚基托等传递到视敏锐度，但至今仍无系统的研究。

Huang 等[33]比较了正常人与成人弱视患者知觉学习的带宽，以探讨二者传递特性的可能差异。10 例成人和青少年屈光参差性弱视(S1-S10; 18.6 ± 2.8 岁) 及 21 例正常视力成人和青少年参加了试验，其中正常对照被随机分成两组：第 1 组 14 例(S11-S24; 22.9±1.7 岁)，第 2 组 7 例(S25-S31; 22.6±3.1 岁)。在训练前后测量受者双眼的对比敏感度
曲线和视频度。训练在弱势视和正常对照时的非优势眼进行。训练任务为光标对比度检测任务。阶梯法被用来跟踪测量每个受测者的对比度阈值。每例受测者都在单一空间频率训练。弱势组和第 1 对照组的平均值为 7.5 ± 3.8 和 26.1 ± 4.2 周期/度；中位数 9.6 和 27 周期/度。第 2 对照组有 10 周期/度受测，其频率和弱势组训练频率的中位数接近。

对弱势第 1 对照组而言，在截止频率下训练显著的提高了受测者的对比敏感度 (10.7 dB 和 5.6 dB; P<0.01)；在 10 周期/度训练的第 2 对照组对敏感度提高得非常少 (0.7 dB)。对比敏感度提高幅度和年龄有显著相关性 (r=0.20, P<0.10)。对弱势患者而言，训练显著改善了弱势 (平均值：37.2%, P<0.01) 和相对健全 (13.4%, P<0.01) 的视力；两个对照组的视力均显著变化 (P=0.15)。

通过比较训练前后的对比敏感度曲线，我们可以计算知觉学习效应从训练空间频率向其他未训练频率的传递情况。我们只考虑有显著学习效应的弱势和第 1 对照组的受测者。他们在训练空间频率的对比敏感度提高无明显差异 (9.98 dB vs. 8.30 dB; P>0.25)，但知觉学习的带宽有显著差异 (P<0.01)：弱势相对者平均带宽为 4.04±0.63 倍频程 (octaves)；第 1 组正常对照的平均带宽仅为 1.40±0.30 倍频程 (图 8)。弱势患者学习效应最强的空间频率约比训练频率低 1 倍频程，而正常受测者则发生在训练频率，此发现与弱势的最后通道理论是一致的 (74)。

Sowden 等(25) 发现正常受测者在旁中央区的知觉学习带宽约为 1.3 倍频程。这与我们的正常受测者的学习带宽结果都和典型的空间频率通道带宽是一致的 (34,71)。尽管他们在旁中央区训练空间频率为 4 周期/度的光标对比度检测，而我们是在中央凹训练空间频率为 27 周期/度的对比度检测。

有学者应用适应 (38)、遮蔽 (29) 和滤波字母识别 (37) 等方法已经证实弱势视患者的空间频率通道带宽和正常人的是类似的 (即 1 到 2 倍频程)。我们得的结果表明弱势视患者的学习带宽可大大超过其空间频率通道带宽。也就是说，对弱势视系统而言，在一个空间频率训练，学习效应可跨越传递到其他空间频率通道，而正常视觉系统的知觉学习则确定于训练的空间频率通道。前面提及视敏度其实内涉及多个空间频率通道，因此弱势视患者的大到知觉学习带宽可能是其视敏度提高的基础。我们的结果为知觉学习作为一种高效的弱势治疗手段提供了一定的理论基础。

五、讨论

弱势视的电生理学研究表明，弱势视的有效的输入通常是有一定程度的降低(8)，这可能是因为我们发现的弱势内加法噪声敏感的电生理学基础。Lu 等 (26) 指出，刺激输入的降低和内加法噪声敏感在行为上的效果是完全一致的。内加法噪声敏感的另外一种可能的生理学基础是弱势动物神经细胞的变异性和变性(80,81)。我们的心理物理学研究揭示了这是弱势视生理学的一个有意义的研究方向。

在 PTM 模型中，知觉模板代表了受测者整体的“感受野”。知觉模板误差差值可能与皮层神经元之间的活跃连接 (topographical jitter) 有关，这种错误可能发生在视觉信处理的各个阶段(82)。另外，模板误差差值变化也可与决策阶段弱势视的高频空间频率通道的权重变化有关。

我们的研究表明，弱势视患者即使通过遮盖治疗视力已经恢复但在高频的对比敏感度还存在损害。这提示在弱势视的治疗上应该用与高频相关的任务进行选择性的训练。在“治愈”弱势视患者中重复 Zhou 等(20) 的试验结果将会非常有趣。McKee 等(23) 发现单眼对比敏感度可能与早期视觉通路中的双眼神经元相关，这提示临床遮盖治疗后还应该进行双眼功能的训练。

Lu 等 (28,83,84) 提出从现有大多数观察到的知觉学习的特性中并不能以推断知觉学习发生的位点。事实上，要想解释各式各样的观察到的特性，我们必须系统地分析知觉学习与传递的任务。他们发现
知觉学习的主要机制为内部加法噪音的降低和模板调谐变优。我们推测视觉系统对高阶的内部噪音和调谐变优的知觉模板可能使得学习的提高空间更大。如果学习前内部噪音主要位于空间频率通道信息汇聚之后，那么在截止空间频率下，学习将会传递到其他未训练的空间频率。如果内部噪音发生于双眼信息汇聚之后，那么可观察到学习的传递。弱视患者的知觉学习的传递特性及其可能机制需要进一步细致研究。

很多研究表明，传统的遮盖治疗对大龄儿童及成人弱视治疗效果较差，因此现今临床实践对成人弱视几乎不使用遮盖治疗。我们建议对传统的发育关键期理论进行重新评估。我们自己的研究及其他一些小组的研究都说明成人弱视的视觉系统仍存在相当程度的可塑性(Girotti, de Almeida, 2003)。知觉训练可显著改善成人弱视患者的空间视觉能力。

参考文献


白内障超声乳化术植入不同类型人工晶状体后眼屈光改变的前瞻性研究
对396例白内障超声乳化术，随机接受PMMA晶状体（811C或824C），丙烯酸酯晶体（MA60BM）或硅凝胶晶状体（AQ110NY）植入，随访48周。硅凝胶晶状体植入术8周出现有统计学差异的近视改变，并持续至随访结束，平均改变-0.53 D，术后12周开始出现远视变化。其他晶状体术后眼屈光度和晶状体位置无明显改变。
Eur J Ophthalmol，2008，18：371-376。

年龄相关性核性白内障与饮食及血清中叶黄素和玉米黄质含量的相关性研究：一项妇女健康研究报告
对1808例50-79岁女性受试者进行研究。结果显示饮食中叶黄素和玉米黄质含量较高的核性白内障的发生比含量较低组降低23%，含量最高的20%的人比含量最低的20%的人降低32%；而黄斑区色素密度的改变则呈相反趋势。
Arch Ophthalmol，2008，126：354-364。

局部用尼普洛尔和噻吗洛尔对正常眼压性青光眼患者视野影响的对比研究
日本一项中心、随机、双盲试验中45例正常眼压性青光眼患者应用尼普洛尔（napradilol）或噻吗洛尔治疗后视野改变进行3年的随访研究。结果显示应用不同药物的两组患者，Humphrey视野检查的各项参数和眼压的下降在组间无统计学差异。
Jpn J Ophthalmol，2008，52：255-264。

拉坦前列素与手术治疗原发性开角型青光眼对日间眼压控制的对比研究
将60例原发性开角型青光眼患者分为3组，分别应用0.005%拉坦前列素、小梁切除术、深巩膜切开联合胶原植入术进行治疗。三组间的基线眼压（均值分别为15.5，10.1，13.9mmHg）和日间眼压平均值（分别为15.7，10.1，13.7mmHg）均有显著差异，但眼压变化程度无统计学差异。饮水试验后，拉坦前列素组眼压显著升高。
Br J Ophthalmol，2008，92：332-336。

全层视网膜脉络膜切开诱导视网膜脉络膜静静脉吻合治疗伴有黄斑水肿的视网膜中央静脉阻塞
对9例伴有难治性黄斑水肿的非缺血性视网膜中央静脉阻塞（CRVO）患者行玻璃体切割术联合1至2个视网膜脉络膜全层切开，使大分支静脉达到巩膜内层水平。平均随访12个月。结果示眼底有功能性视网膜脉络膜静静脉吻合形成，视力从0.75升至0.55（logMAR）；平均中央黄斑厚度从686μm降至251μm。此手术可能提高CRVO患者的预后。
Retina，2008，28：477-484。

曲安奈德缓释制剂治疗慢性视网膜中央静脉阻塞的12个月随访结果
对14例伴有慢性难治性黄斑水肿的视网膜中央静脉阻塞（CRVO）患者行玻璃体内植入曲安奈德缓释制剂，随访12个月。术前患者中心视力为20/216，术后12个月为20/80，多数患者眼压基线视力有提高；中心凹的平均厚度和中心数厚度从622μm和600μm降至307μm和199μm。12个月时所有有晶状体眼患者均发生白内障；13例眼压升高，需要药物或手术控制。
Am J Ophthalmol，2008，146：285-291。